
Version 1.0.1

Odielib:
A C Accelerated Math

Library for Tcl
Presented to the 24th Annual Tcl Developer’s Conference (Tcl‘2017)

Houston, TX
October 16-20, 2017

Sean Deely Woods
Senior Developer
Test and Evaluation Solutions, LLC
400 Holiday Court
Suite 204
Warrenton, VA 20185
Email: yoda@etoyoc.com
Website: http://www.etoyoc.com

Abstract:

Odielib is a collection of tools and C accelerated math functions that I have collected
over time, and repackaged in a variety of ways for several projects. The most
interesting parts of Odielib for most users will be the 3d vector arithmetic and
transformation functions, which are implemented as a custom TclObj type. This paper
will describe some of the complexities of implementing custom TclObjs, as well as
novel strategies used by this library for managing how data structures interact with the
interpreter.

mailto:yoda@etoyoc.com
http://www.etoyoc.com
mailto:yoda@etoyoc.com
http://www.etoyoc.com

Why This Paper Is For You
If you picked up this paper, and have gotten past the abstract you want to know what goodies

await you by the end. While there is a lot to tell, here is a quick summary:
1. A mathematical framework for performing common mathematical operations for 2d and 3d

graphics. Included in that framework namespaces tailored to solve specific problems in
everyday Tcl/Tk programming.

2. Custom TclObj types which allow the outputs of many math functions to be stored and
reused as Tcl values.

3. Several C accelerated TclOO classes to shepherd data sets.
4. 2d polygon operations, 3d polygon operations, and the ability to decompose polygons into

line segments and reconstitute line segments into polygons.
5. A Tcl based build system which allows new functions to be dropped in with a minimum of

fuss and bother.
6. The entire library packs itself into a single C source file amalgamation (similar to Sqlite). If

you can’t stand the build system, you can swipe one C file and one C header and add odielibc
into your own project.

I want to play with this now
If you can’t wait until the end of this paper to start playing, feel free to grab the fossil

repository at http://fossil.etoyoc.com/fossil/odielib and compile it yourself. It can build as a
standard(ish) TEA package:

There is a standard autoconf and Makefile, but you can save yourself a step by just calling the
Tcl based build system directly. The make.tcl script understands all of the standard operations,
with the added ability to take arguments in for operations like install.
Taking Odielib for a spin

With your library built and in your path, your can start to play with the functions. Odielib tries
very hard to blend in with Tcl. The commands return valid tcl values, and while accelerated in C,
they still format nicely as strings and lists.

To your right is a quick and dirty demo of some basic vector arithmetic. The ::vector
namespace handles generic vectors (up to 16 dimensions). The output is the minimum size that
will accommodate the dimension of the largest operand.
Vectors output by the ::vector namespace are a custom
Tcl_Obj that stores values as a C array of doubles. That
same Tcl_Obj type is used for the other families of
vectors operations. And because each namespace only
deals with one family of vectors, it can do nice things like
massage an empty list {} into {0 0 0}.

Version 1.0.1

fossil	clone	http://fossil.etoyoc.com/fossil/odielib	odielib.fos	
fossil	open	odielib.fos	
tclsh	make.tcl	library

package	require	odielibc	
set	a	{0	1}	
set	b	{1	2	3}	
set	c	[::vector::add	$a	{1	2	3}]	
puts	$c	
{1	3	3}	
::vectorxyz::midpoint	{}	$c	
{0.5	1.5	1.5}

http://fossil.etoyoc.com/fossil/odielib
http://fossil.etoyoc.com/fossil/odielib
http://fossil.etoyoc.com/fossil/odielib

Background
Odielib is an offshoot of the Integrated Recoverability Model (IRM). IRM builds and displays

models of ships. To help our users make sense of the model, we work very hard to make the
graphical displays resemble general arrangements drawings. Many of the fundamental concepts
(such as the wallet and slicer) were implemented by my predecessors on the project, including
Richard Hipp and Clif Flynt. Over the 10 years I have been developer, more functions have been
added, and the project has evolved considerably.

Until recently many of these functions were internal to the Integrated Recoverability Model’s C
library. For one customer we had to make a viewer which, if reverse engineered, would not
expose our proprietary simulation code. The decision was made to split our viewer functions out
from our simulations functions. Because of the general purpose nature of these facilities, we
decided to open source the library as a gesture of good will to the Tcl community.

The Tcl API
Odielib breaks math functions into several domains. All of the domains share an internal

representation for Vectors and matrices that are optimized for the most complex structure we
support: a 4x4 affine transformation. Internally, all vector values are 4x4 arrays of doubles with a
marker for how many rows and columns we are actually using. Vector values also are marked
with a “form” tag, allowing us to distinguish between, say, polar coordinates and cartesian
coordinates. Here is a breakdown of the math domains Odielib supports:

Namespace Description Example

::affine4x4 4x4 matrix of values expressed as a list of lists of 4 double
values, or a single list of 16 double values.

::affine4x4::identity
{{1.0 0 0 0} {0 1.0 0 0} {0 0 1.0 0} {0 0 0 1.0}}

::matrix Generic two dimensional array as lists of lists. (Usage varies)

::polygon A data structure expressed as a series of
duples mapping the perimeter of a 2d polygon

::polygon::create {0 0 10 0 10 10 0 10}

::polygonxyz A data structure expressed as a series of 3 element
lists representing the perimeter of a 3d polygon

::polygonxyz::create {
{0 0 0} {10 0 0} {10 10 0} {0 10 0}}

::quaternion A data structure expressed as a 1x4 matrix ::quaternion::create {0 0 0 1}

::shapes A suite of routines designed to speed up the
plotting of vector graphics on a tk canvas

(Usage Varies)

::vector Generic Vector of N dimensions as lists ::vector::add {1 1} {1 2 3}

::vector2d Two dimensional vectors represented as a flat
list of doubles

::vector2d::add 1 1 2 3

::vector3d Three dimensional vectors represented as a flat
list of doubles

::vector3d::add 1 2 3 4 5 6

::vectorxy Two dimensional vectors as Tcl values ::vectorxy::add {1 1} {1 2}

::vectorxyz Three dimensional vectors as Tcl Values ::vectorxyz::add {1 1} {1 2 3}

Version 1.0.1

Odielib also implements several TclOO based “data sets”. These are C data structures created
and managed by a TclOO object. Those classes are:

Usage
Odielib was not designed from the top down, it evolved from the ground up. If a process was

too slow in Tcl, we added a C accelerated routine. Over the years patterns emerged and a certain
logic evolved. Well, 2 patterns actually. Which pattern depends on your ultimate product: vectors
as values or vectors as as stream of doubles.
Vectors as Streams of Doubles

The polygon, shapes and vector2d namespace are
tailored to speed up operations on a Tk canvas. The
arguments and outputs take in streams of double values
where it is assumed all of the odd indices are X and the
even are Y. The also output data as a stream of double values.

In this longer example we use ::polygon::hexgrid_location to compute the cartesian point
where index X and Y occur for a hexagon grid. We then use the ::polygon::hexagon function to
generate the perimeter of the shape, now that we know the center and size. The hexagon function
returns a stream of doubles, which is a format that the Tk canvas can use to define a shape. The
result is the honeycomb pattern below:  

Class Description

::odielib::entity A container for database records to cache properties used by individual
entities, which are overlaid atop the properties of the type.

::odielib::plotter A tool to maintain math transforms to allow 2d data points to be scaled and
plotted using arbitrary zoom factors

::odielib::polygonhull A set of 3 dimensional faces which represent shapes and figures in space

::odielib::segset A set of 2d line segments which can be constituted into one or more polygons

::odielib::simtype A container for database records to cache properties used by a set of like
entities

::odielib::slicer A set of building levels used to splay 3 dimensional layouts across a 2
dimensional canvas

::odielib::wallset A set of 2d line segments on a canvas representing walls and rooms

Version 1.0.1

::vector2d::add	12	34	56	78	
>	68.0	112.0

package	require	Tk	
set	gridsize	100	
canvas	.c	-width	600	-height	600	;	grid	.c	
for	{set	x	0}	{$x	<	10}	{incr	x}	{	
	for	{set	y	0}	{$y	<	10}	{incr	y}	{	
			::polygon::hexgrid_location	$gridsize	$x	$y	0	cx	cy	
			.c	create	polygon	\	
				[::polygon::hexagon	$cx	$cy	$gridsize	$gridsize	0]	\	
					-fill	{}	-outline	grey	-tags	hex#$x,$y	
	}	
}

Odielib has utilities that allow us to interact with polygons without the Tk canvas. This is
especially important for non-graphical applications. Let us say we had a batch routine that
needed to understand how objects interacted with a hex grid similar to our previous example.

In the above example, we populate a dict called cell. Every value in the cell dict is a data
structure which can answer many questions relating to that shape. Those data structures are
arguments to geometry tests in the ::polygon namespace. In this example we are using the
polygon intersect function to measure how much of each cell overlaps a test polygon X.

Vectors as Values
The affine3x3, affine4x4, matrix, quaternion, vector,

vectorxy and vectorxyz namespaces treat vectors as
values. Vectors are input and output as singular Tcl values.
Kind of like passing lists around. Except the values aren’t
lists, they are the internal matrix data structure of Odielib.
On object creation all of the elements of the matrix are
initialized to zero, and the rows and columns are assumed to be zero. This is primarily to keep
bad inputs from causing segmentation faults. But it has the nice side effect of allowing the user
to add empty set to empty set and get {0 0 0}.

Because they share a common TclObj representation, passing data produced from one
namespace as an argument to a function in another namespace is perfectly safe and acceptable.
What the functions produce may be utter garbage. But it will be safe from a “will not crash Tcl”
perspective. The price of decent performance is that we have to assume the user understands the
math he or she is trying to use.

Version 1.0.1

for	{set	x	0}	{$x	<	10}	{incr	x}	{	
	for	{set	y	0}	{$y	<	10}	{incr	y}	{	
			::polygon::hexgrid_location	$gridsize	$x	$y	0	cx	cy	
			dict	set	cell	$x.$y	[::polygon::hexagon	$cx	$cy	$gridsize	$gridsize	0]	
	}	
}	
set	X	[::polygon::rectangle	50	50	50	50]	
foreach	{idx	poly}	$cell	{	
		set	isect	[::polygon	intersect	$poly	$X]	
		if	{[lindex	$isect	0]>0}	{	
				puts	[list	$idx	{*}$isect]	
		}	
}	
Output:	
0.0	96.63070659909184	27.75	31.40544456622768	
0.1	294.48119994212817	30.25	64.53941916244324	
1.0	2113.0	53.5	49.5

::vectorxy	add	{12	34}	{56	78}	
>	{68.0	112.0}	
::vectorxyz	add	{}	{}	
>	{0	0	0}

Tcl as an Expression Engine
Odielib does not provide an expression engine equivilent to the vexpr command in Vectcl. Well

at least not anymore. In the early days it did provide an Reverse Polish Notation based stack
expression system. But the architecture proved unwieldy and it was later removed. Though
references may still exist in the code.

For the types of math operations Odielib is performing, formal orders of operation do not exist.
Or worse, they may exist and there are competing standards. PEMDAS and other math
conventions are no guide whatsoever.

The case below is an attempt to use the math of Odielib as a physics engine, albeit a simplistic
one. A massless object in a frictionless space is imparted with angular momentum in the direction
of precession. Attached to the center of this object is a thruster imparting an acceleration of 1 unit
in whatever direction the object is facing.

 The output of our experiment demonstrates the complexity of physics once you get rotation
involved:

Version 1.0.1

f:	{0.62161	0.783327	0}	x:	{0.62161	0.783327	0}	v:	{0.62161	0.783327	0}	
f:	{-0.227202	0.973848	0}	x:	{1.01602	2.5405	0}	v:	{0.394408	1.75717	0}	
f:	{-0.904072	0.42738	0}	x:	{0.506354	4.72506	0}	v:	{-0.509664	2.18455	0}	
f:	{-0.896758	-0.44252	0}	x:	{-0.900069	6.46709	0}	v:	{-1.40642	1.74203	0}	
f:	{-0.210796	-0.97753	0}	x:	{-2.51729	7.23159	0}	v:	{-1.61722	0.764504	0}	
f:	{0.634693	-0.772765	0}	x:	{-3.49981	7.22333	0}	v:	{-0.982526	-0.00826063	0}	
f:	{0.999859	0.0168139	0}	x:	{-3.48248	7.23189	0}	v:	{0.017333	0.00855327	0}	
f:	{0.608351	0.793668	0}	x:	{-2.8568	8.03411	0}	v:	{0.625684	0.802221	0}	
f:	{-0.243544	0.96989	0}	x:	{-2.47466	9.80622	0}	v:	{0.38214	1.77211	0}	
f:	{-0.91113	0.412118	0}	x:	{-3.00365	11.9904	0}	v:	{-0.52899	2.18423	0}

#	Calculate	the	location,	orientation,	thrust,	and	spin	
#	of	an	object	in	3d	space	
set	location							[vectorxyz	create	{0	0	0}]	
set	attitude							[affine4x4	identity]	
set	attitude_delta	[affine4x4::rotate_precession	0.9]	
set	deltap									[vectorxyz	create	{1	0	0}]	
set	velocity							[vectorxyz	create	{0	0	0}]	
for	{set	x	0}	{$x	<	10}	{incr	x}	{	
		#	Compute	one	step	
		affine4x4::*=	attitude	$attitude_delta	
		set	F	[vectorxyz	transform	$attitude	$deltap]	
		vectorxyz::+=	velocity	$F	
		vectorxyz::+=	location	$velocity	
		puts	[list	f:	$F	x:	$location	v:	$velocity]	
}

The Build System
The build system for Odielib is the Practcl concept I presented at the 2016 conference. Practcl

uses TclOO objects as containers of configuration data, as actors in synthesizing connector code,
and as proxies to access elements of different tool sets. The tool sets supported are currently
GCC/Automake and Microsoft Visual Studio. Though I have to admit that MSVC is a bit of a
work in progress.

Markup exists to capture C functions, C implemented Tcl Commands, Data Structures, and C
implemented TclOO methods. Practcl is targeted for the experienced C developer. It doesn’t try
to do argument validation. It doesn’t deduce what the output to the interpreter will be. It’s just a
wrapper for raw C code.

The markup for a simple function is
given on the right. “c_tclcmd” is a
method for an object. It is assumed that
the developer is familiar with the
template for Tcl object commands, and
can live with the standard names:
clientData, interp, objc and objv. The
body C code is exactly what would be
entered if the functions was cut by
hand. However, the transformation of
the command name to a C function
name, preparing the namespace, and
injecting the command into the
interpreter are all handled
automatically by the build automation.

A plain C function is similar. The
code itself is C, we are just using Tcl as a wrapper to capture what we need to integrate that code.
We also include all of the information that will be needed to prototype the function. Depending
on the function’s role the prototype will be in either the library’s header files (for exported
functions) or in a declaration block of the C file (for static functions.)

Practcl can also integrate static C source files and headers, as well as compiled libraries. This
is particularly important for bringing older projects up to speed. You don’t need to rewrite your
entire project in Practcl, just the parts your are trying to improve.

Because Practcl is running inside of a Tcl interpreter, we can also do things like unfold loops or
template repetitive code. Now on the surface unrolling a loop sounds like something your
compiler would do for you. Except that most applications are compiled with an -O2 or -Os level
of optimization. Few applications utilize -O3, because it has a tendency to “optimize” beyond the
point of actually improving the software’s performance.

On the next page I implement a 4x4 matrix multiplication using ~23 lines of Tcl code. While
that is not a terrible function to optimize by hand, it’s not terribly fun either.  

Version 1.0.1

#	A	Tcl	command	in	Practcl	markup	
my	c_tclcmd		::thestate::two_plus_two	{	
		Tcl_SetObjResult(interp,Tcl_NewIntObj(5));	
		return	TCL_OK;	
}	

#	A	C	function	in	Practcl	markup	
my	c_function	{static	inline	double	
Vector_GridScaler(double	x,double	grid,double	grain)	
}	{	
		double	q;	
		q=grid*round(x/grid);	
		if((x-q)>grain)	{	
				q+=grain;	
		}	
		return	q;			
}

The advantage here is that the Tcl code still bears some resemblance to the algorithm one
would find in a math textbook. The C code produced, however, is pretty tightly optimized. We
use Tcl’s loop constructs to walk through the logic of the algorithm, and we just store the final
motions as C code.

The C API
Odielib is also designed to play well with others on the C API level. Of particular concern to

most developers is how the Tcl_Obj is designed, how it stores its values, and how can it be
swiped for their own projects.

Inside of Tcl values, all vectors and
matrices are of type Odie_MatrixObj.
That form allows for up to 128 rows
and 128 columns. It also has a
placeholder for “form” which define
rules for how the matrix can be used
and/or transformed by functions which
need other forms. Units is for internal
use of the forms. It is currently used for
polar coordinates to indicate if the
values are in radians or degrees.

Each matrix form also registers a data
structure. That data structure includes
its expected size, and a placeholder for
a function to transform other forms into it (or fail in the process.)

As a safety and convenience all matrices exported to the Tcl interpreter are pre-allocated to
hold the largest matrix supported by the system. Currently a 4x4 affine matrix.  

Version 1.0.1

struct	Odie_MatrixObj	{	
		int	refCount;	
		char	rows;	
		char	cols;	
		char	form;	
		char	units;	
		double	matrix[];	
};	
struct	MatrixForm	{	
		int	id;	
		const	char	*name;	
		int	rows;	
		int	cols;	
		const	char	*description;	
		const	char	*(*xConvertToForm)(MATOBJ*,int	form);	
};

set	body	{}	
for	{set	i	0}	{$i	<	4}	{incr	i}	{	
		for	{set	j	0}	{$j	<	4}	{incr	j}	{	
				append	body	"\n		double	cell_${i}_${j}\;"	
		}	
}	
for	{set	i	0}	{$i	<	4}	{incr	i}	{	
		for	{set	j	0}	{$j	<	4}	{incr	j}	{	
				append	body	\n	"		cell_${i}_${j}="	
				set	terms	{}	
				for	{set	k	0}	{$k	<	4}	{incr	k}	{	
						lappend	terms	"A\[AFFINE_IDX_${i}_${k}\]*B\[AFFINE_IDX_${k}_${j}\]"	
				}	
				append	body	"[join	$terms	+]\;"	
		}	
}	
for	{set	i	0}	{$i	<	4}	{incr	i}	{	
		for	{set	j	0}	{$j	<	4}	{incr	j}	{	
				append	body	\n	"		R\[AFFINE_IDX_${i}_${j}\]=cell_${i}_${j}\;"	
		}	
}	
my	c_function	{inline	void	Odie_Affine4x4_Multiply(AFFINE	R,AFFINE	A,AFFINE	B)}	$body

All vector and matrix C functions accept a pointer to an array of doubles as an input. I have
also tried to enforce the convention that the output is always the first argument.

 Odielib provides the function:

�
This function works in a similar way to Tcl_GetIntFromObj or Tcl_GetDoubleFromObj.

The library will massage tclObj into an Odie_MatrixObj value and then set the result to the
Tcl_Obj’s internal representation. If the function returns anything other than TCL_OK,
something went wrong and meaningful errors will be written to the interp.

Several functions exist to generate new Odie_MatrixObj data structures, depending on the
information you have about them. All of the forms take care of allocating the memory for both
the structure and the double array it tracks. The allocator uses the trick of allocating both the
structure and the array at the same time in the same in the same Tcl_Alloc, so that freeing the
Odie_MatrixObj will also free the double array. Also, the allocator provides memory that is
zeroed out. With that said, Odielib still has to maintain its own refcount on data structures
because the same Odie_MatrixObj could be sent multiple times as different Tcl_Obj structures.
To manage the refcounts the library provides:

�
When it comes time to write a matrix value back to the interpreter, Odielib provides a Tcl_Obj

packing and encoding function. This function takes in an Odie_MatrixObj data structure, and
returns a Tcl_Obj with that structure packed into the internal representation.

�
Odielib increments its own internal refcount on structures fed into Matrix_To_TclObj(), and

decrements the refcount on structures fed to Matrix_Free().
A simple Tcl API function looks like the example below. Odie_Matrix_To_Fit is a routine that

measures the inputs, computes the minimum size of the matrix to conform to both inputs, and
returns a new structure with a compatible form and size.

int	Odie_GetMatrixFromTclObj(
		Tcl_Interp	*interp,	Tcl_Obj	*tclObj,	int	form,	Odie_MatrixObj	**result	
);

void	Matrix_Free(Odie_MatrixObj	*matrix);

Tcl_Obj	*Matrix_To_TclObj(Odie_MatrixObj	*matrix);

Version 1.0.1

my	c_tclcmd		::vector::add	{	
		Odie_MatrixObj	*A,*B,*C;	
		int	i,size_c;	
		if(objc	<	3)	{	
				Tcl_WrongNumArgs(interp,	1,	objv,	"A	B");	return	TCL_ERROR;	
		}	
		if(Odie_GetMatrixFromTclObj(interp,objv[1],MATFORM_null,&A))	return	TCL_ERROR;	
		if(Odie_GetMatrixFromTclObj(interp,objv[2],MATFORM_null,&B))	return	TCL_ERROR;	
		C=Odie_Matrix_To_Fit(A,B);	
		size_c=C->rows*C->cols;	
		for(i=0;i<size_c;i++)	{*(C->matrix+i)	=	*(A->matrix+i)	+	*(B->matrix+i);}	
		Tcl_SetObjResult(interp,Matrix_To_TclObj(C));	
		return	TCL_OK;	
}

Implementing New Matrix Forms
New matrix forms are registered

via the odielib::vexpr_argtype
procedure in the Odielib build
system. In the next example we’ll be
working with a custom datatype to
represent a vector in three
dimensions. The internal calls to this
library do not need to know about
the rest of Odielib. And in many
cases, it is better to pass copies of
operands around instead of the
pointer to the original. To that end,
our vectorxyz type has its own
Odie_GetVectorXYZFromTclObj
function which populates an existing
double array instead of allocating a
new one. It also provides its own
VectorXYZ_To_TclObj which will
copy the contents of an array into a
new Odie_MatrixObj.

This custom type can also interact
with Odie_MatrixObj structures
directly, so we also demonstrate a
modified add function that will read
and write a value back to a Tcl
variable. One of the nice/scary
features of Odielib’s value system is
that we can modify values out from
under Tcl’s nose. We just need to be
sure to invalidate the string
representation.

Because the c functions all take
double * as arguments, passing our
Tcl value’s internal value is as
simple as accessing the .matrix field
of the structure.

Version 1.0.1

#	In	vectorxyz.tcl	
#	Define	the	custom	type	
::odielib::vexpr_argtype	vector_xyz	{	
		typedef	VectorXYZ	
		forms	{}	rows	3		cols	1	
		description	{vector:	X	Y	Z}	
		function-convert	Matrix_To_cartesian	
}	

#	Add	a	C	math	routine		
my	c_function	{static	inline	void	VectorXYZ_Add(
VectorXYZ	C,VectorXYZ	A,VectorXYZ	B	
)}	{	
		C[X_IDX]=B[X_IDX]+A[X_IDX];	
		C[Y_IDX]=B[Y_IDX]+A[Y_IDX];	
		C[Z_IDX]=B[Z_IDX]+A[Z_IDX];	
}	
##	
#	Link	the	C	routine	to	the	Tcl	API	
##	
my	c_tclcmd		::vectorxyz::add	{	
	VectorXYZ	A,B,C;	
	if(objc	<	3)	{	
			Tcl_WrongNumArgs(interp,	1,	objv,	"A	B");	
			return	TCL_ERROR;	
	}	
	if(
Odie_GetVectorXYZFromTclObj(interp,objv[1],A)	
)	return	TCL_ERROR;	
	if(
Odie_GetVectorXYZFromTclObj(interp,objv[2],B)	
)	return	TCL_ERROR;	
	VectorXYZ_Add(C,A,B);	
	Tcl_SetObjResult(interp,VectorXYZ_To_TclObj(C));	
	return	TCL_OK;	
}	
##	
#	Addition	that	writes	back	to	a	variable	
##	
my	c_tclcmd		::vectorxyz::add_inplace	{	
		Odie_MatrixObj	*A;	
		VectorXYZ	B;	
		Tcl_Obj	*varname;	
		if(objc	<	3)	{	
				Tcl_WrongNumArgs(interp,	1,	objv,	"A	B");	
				return	TCL_ERROR;	
		}	
		varname=Tcl_ObjGetVar2(interp,objv[1],NULL,0);	
		if(
Odie_GetMatrixFromTclObj(interp,varname,MATFORM_vectorxyz,&A)	
)	return	TCL_ERROR;	
		Tcl_ResetResult(interp);	
		if(
Odie_GetVectorXYZFromTclObj(interp,objv[2],B)	
)	return	TCL_ERROR;	
		VectorXYZ_Add(A->matrix,A->matrix,B);	
		Tcl_InvalidateStringRep(varname);	
		return	TCL_OK;	
}

In Conclusion
This paper was a brief overview of the capabilities, design, and implementation of Odielib. The

project is managed as a fossil repository at: http://fossil.etoyoc.com/fossil/odielib
My hope is that Odielib’s ad-hoc architecture could form the basis of a numerical library for

Tcl, on the same level as NumPy for Python. I could certainly use some help with writing new
modules, regression tests, and documentation. Feel free to contact me at: yoda@etoyoc.com if
you have questions, suggestions, (or even better) contributions. I do maintain a public sandbox
for Odielib at http://fossil.etoyoc.com/sandbox/odielib, and that project allows users to self
register and contribute code immediately. Changes are pulled into the sandbox from the official
project nightly, though no changes are ever pulled in the other direction. When something earth
shatteringly awesome does appear in the Sandbox, my plan is to just make a diff and apply a
patch.

Acknowledgements
I would like to specially thank Richard Hipp and Clif Flynt. They were my predecessors on the

IRM, and many of their designs have carried through into Odielib. I would also like to thank
T&E Solutions for the time to develop much of this project on the clock as part of my regular
duties.

While I’m at it, let me thank my wife Ginger for keeping and eye on the kids for a bit while I
banged this paper together, my late Uncle Matt for pirating a copy of Turbo C for me back when
I was a teenager, my Mom for buying my first computer, Claude Shannon for inventing
information theory and Ogg, for inventing fire. At least I think his name was Ogg. The “gg”
sound in his name doesn’t really have a parallel in modern phonics.

The cover image was downloaded from:
 http://img.auctiva.com/imgdata/0/9/6/1/1/2/webimg/575133520_tp.jpg
I was doing an image search for “Lego Kitchen Sink”, and that image sort of spoke to me.

Version 1.0.1

http://fossil.etoyoc.com/fossil/odielib
mailto:yoda@etoyoc.com
http://fossil.etoyoc.com/sandbox/odielib
http://img.auctiva.com/imgdata/0/9/6/1/1/2/webimg/575133520_tp.jpg

