
tclrmq
Garrett McGrath

Tcl Conference 2017

Where Is It?
● Full source code under a BSD-style license:

○ https://github.com/flightaware/tclrmq
● Contains full documentation, RabbitMQ tutorials, additional examples
● Welcome all contributions and feature suggestions

 package require rmq

https://github.com/flightaware/tclrmq

What Is It?
● Pure Tcl Library for RabbitMQ

○ Requires Tcl 8.6 (uses TclOO and, if TLS is needed, TclTLS)
○ No external bindings, no compilation

● Fully asynchronous
○ No blocking
○ Callback based

● Supports AMQP 0-9-1
○ Most widely supported version of the protocol
○ Primary RabbitMQ use case

AMQP?
● Advanced Message Queueing Protocol
● Programmable protocol for working with distributed queues
● Open standard developed as a cooperative effort
● Some of the earliest organizations with technical contributors

○ Red Hat
○ Cisco
○ JPMorgan Chase

● Binary, application layer protocol
○ Semantics defined in OO fashion
○ Provides several classes and methods that servers and clients must implement
○ Offers a message broker

RabbitMQ
● Particular implementation of AMQP
● Open source
● Written in Erlang
● Actively developed and maintained
● Well documented
● Supports distributed operation at client and server level
● Adds a number of protocol extensions
● Management tools and other plugins

Task 0: Channeling Connections
package require rmq

Need some credentials
set login [::rmq::Login new -user tcl -pass
secret]

Create a Connection object
set conn [::rmq::Connection new -login $login]

Set a callback for when it connects
$conn onConnected rmq_connected

Make the connection
$conn connect

Enter the event loop
vwait ::die

proc rmq_connected {conn} {
 # Open a channel and do some work
 set rChan [::rmq::Channel new $conn]

}

More Than A FIFO
● Same idea as the queue ADT

○ Altered interface
○ AMQP server adds a new level of indirection

● Cannot put data directly on a queue
○ All messages sent to an exchange

● Exchange decides which queue to put the message
○ Uses client-supplied bindings to route messages
○ Where much of the power and programmability resides

● Several types of exchanges
○ direct
○ fanout (1-to-all) (publish / subscribe)
○ topic (filtered publish / subscribe)
○ header (programmable semantics: priority queues, consistent hashing)

Declarations: Exchanges
proc rmq_connected {conn} {
 set rChan [::rmq::Channel new $conn]
 $rChan onOpen declare_exchanges
}

proc declare_exchanges {rChan} {
 set eTypes [list direct topic fanout header]
 set eFlags [list $::rmq::EXCHANGE_DURABLE]

 $rChan on exchangeDeclareOk exchange_declared
 $rChan onError channel_error

 foreach eType $eTypes {
 $rChan exchangeDeclare "xname_$eType" $eType $eFlags
 vwait ::declared
 }

 declare_queues $rChan
}

Declarations: Queues
proc declare_queues {rChan} {
 # create a queue that persists after restarts and do
 # not expect any response from the server
 set qFlags [list $::rmq::QUEUE_DURABLE $::rmq::QUEUE_DECLARE_NO_WAIT]
 $rChan queueDeclare "tcl_queue" $qFlags

 # create a queue that only is accessed by the current connection
 # let the server give us a name for it
 $rChan on queueDeclareOk save_queue_name
 set qFlags [list $::rmq::QUEUE_EXCLUSIVE]
 $rChan queueDeclare "" $qFlags
}

proc save_queue_name {rChan qName msgCount consumerCount} {
 # do something useful with the queue name
 # save the exclusive queue's name, or bind it to an exchange
}

Bindings: Connecting Exchanges and Queues
proc queue_bind_after_declare {rChan qName msgCount consumerCount} {
 # binding is simple: give a queue name and an exchange name
 # provide a routing key
 $rChan queueBind $qName "xname_topic" "tcl.conference.2017"

 $rChan on queueBindOk queue_bound
}

proc queue_bound {rChan} {
 # now we know we have a binding for the xname_topic exchange
}

Task 1: Getting Data In (Publishing)
proc queue_bound {rChan} {
 # get alerted if our data cannot be publish right now
 $rChan on basicReturn returned_message

 # get an ack from the server for publishing a message
 $rChan on basicAck ack_from_server

 # now we know we have a binding for the xname_topic exchange
 set pFlags [list $::rmq::PUBLISH_IMMEDIATE]
 set props [dict create correlation-id tcl-pub content-type application/pdf]
 foreach conferencePresentation $conferencePresentations {
 # args: data exchange routing flags props
 $rChan basicPublish "xname_topic" "tcl.conference.*" $pFlags $props
 }
}

proc returned_message {rChan methodData
frameData body} {
 # figure out which message was returned and
do something
}

proc ack_from_server {rChan dTag multiple} {
 # the server received what we sent and
persisted it to disk
}

Task 2: Getting Data Out (Consuming)
proc get_some_messages {rChan} {
 # consumer flags
 set cFlags [list $::rmq::CONSUME_EXCLUSIVE]

 # args: callback proc name, queue name, consumer tag, flags, props
 $rChan basicConsume consumer_cb $qName "tcl_consumer" $cFlags

 # another way of setting up consumption
 $rChan basicQos $prefetchCount
 $rChan basicConsume consumer_cb $otherQ
}

Task 2: Getting Data Out (Consuming), Cont.
proc consumer_cb {rChan methodD frameD data} {
 # for consuming from multiple queues, can dispatch on
 # method data, which includes exchange and routing key

 # delivery tag contains a numbering of the messages in
 # this session: used for acks and nacks
 set dTag [dict get $methodD
 if {[is_good $data]} {
 if {$dTag % $someMessageMultiple == 0} {
 $rChan basicAck $dTag 1
 }
 } else {
 $rChan basicNack $dTag
 }
}

Future Work
● Benchmarking suite

○ For publishing and consuming under high throughput
● Test case suite

○ To start, implement all tests specified in the protocol spec
● Support for additional protocols
● New features

○ More complex consumer support
○ Connection timeouts
○ Any requests / suggestions

