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Abstract

Micca is a program, written in Tcl, for translating executable software models into “C”
code. It accepts a domain specific language formulated as a Tcl script that describes the
data, dynamics, and processing for a software domain and produces “C” header and code
files implementing the model logic. This paper explores the underlying Tcl technology
that is used to implement the translation. Tcl features and extensions for creating DSL’s,
handling relational-structured data, parsing using a PEG, and code generation using template
expansion are discussed. The source code for micca is freely available and licensed in the
same manner as Tcl.

Introduction

Micca is a program, written Tcl, that aids in translating Executable UML domain models into “C”
code. This paper is about how the facilities of Tcl are used to implement micca.

The next section presents an example that is used throughout the paper. Then we discuss four
aspects of Tcl that were used in micca. Finally, there is a summary and information about where
micca can be obtained.

Example model

This paper uses a running example to illustrate how Tcl is used by micca. The example is fully
worked out in the micca literate program document. The subject matter of the example is a
simplified automatic clothes washer. The intent is to select a subject from ordinary experience to
avoid needing detailed explanations of the problem.

In our washing machine world, a Washing Machine operates according to a Washing Cycle. The
Washing Cycle is a set of parameters that specifies the control values that will turn dirty clothes
into clean ones. The Washing Machine has a Clothes Tub into which the dirty laundry is placed.

https://en.wikipedia.org/wiki/Executable_UML
http://repos.modelrealization.com/cgi-bin/fossil/mrtools/doc/trunk/micca/doc/micca.pdf


There are also Water Valves to control the flow of water into and out of the Clothes Tub and
Motors to run a water pump, agitate the Clothes Tub and rotate the Clothes Tub to spin excess
water out of the clean laundry. Rounding out the machinery, there is a Water Level Sensor that
will tell us when the Clothes Tub is filled with water or empty of water.

The following is a class diagram for the example. We use UML class diagram notation, but note
that the semantics of Executable UML differ substantially from those of conventional UML and
only a small subset of the many different UML diagram types are used in Executable UML. In
particular, Executable UML does not use many of the the object oriented programming language
concepts of UML. Experience has shown that it is much easier to adjust the meaning a person
applies to a graphical symbol than it is to introduce a new, unfamiliar notation.

Washing Machine Control Domain
Class Diagram
Version 1.0.7
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Domain specific languages in Tcl

The class diagram graphic of the example translates into the following micca DSL statements. In
the interests of space, we give only part of the domain script.
domain wmctrl {

class WashingMachine {
attribute MachineID {char[32]}
statemodel {

transition Stopped - Start -> FillingToWash
transition FillingToWash - Full -> Washing
# ... and other transition commands



state Stopped {} {
// "C" code for the Stopped state

}
# ... and other state commands

}
}
class WashingCycle {

attribute CycleType {char[32]}
attribute WashWaterTemp WaterTemp_t
attribute RinseWaterTemp WaterTemp_t
attribute WashDuration unsigned
attribute RinseDuration unsigned
attribute SpinDuration unsigned
attribute AgitationSpeed WashSpeed_t
attribute SpinSpeed WashSpeed_t
# ... and other Washing Cycle class properties

}
association R4 WashingMachine 0..*--1 WashingCycle
# ... and the specification of the other classes in the diagram

}

The above is actually a valid Tcl script despite not containing any readily identifiable core Tcl
commands. The command oriented nature of Tcl along with its simple syntax can be used to
construct a DSL that is declarative in its intent.

Use of namespaces

The micca DSL script is executed in a set of namespaces where the commands resolve locally
without additional command name qualification. The domain command is used to specify the
characteristics of an executable domain model. The class and association commands are
defined in the namespace where the body of the domain command is evaluated. The attribute
command is defined in the namespace where the body of the class command is evaluated. There
are many other commands used to specify the relationships between classes and the dynamics
of class lifecycles and all commands that take a script body as an argument have an associated
namespace in which the body is executed.

Micca uses child namespaces to segregate the commands in the configuration DSL and to control
command name resolution. The namespace where the configuration DSL runs is defined as:
namespace eval @Config@ {

# The "domain" command is defined in this namespace.



namespace eval DomainDef {
# The "class" command is defined in this namespace.
# ...

}
namespace eval ClassDef {

# The "attribute" command is defined in this namespace.
# The "statemodel" command is defined in this namespace.
# ...

}
namespace eval StateModelDef {

# The "transition" command is defined in this namespace.
# The "state" command is defined in this namespace.
# ...

}

# ...
}

Each DSL command taking a script argument invokes ConfigEvaluate to execute the script in
a given namespace.
proc ConfigEvaluate {ns body} {

variable evalLambda
tailcall ::apply [concat $evalLambda [list $ns]] $body

}

This command uses the ability of the apply command to execute a lambda function in a given
namespace. For example, the class procedures uses ConfigEvaluate as follows:
ConfigEvaluate [namespace current]::ClassDef $body

Handling errors

Using the apply command is a convenient way to execute a script in a given namespace. However,
if any error is encountered, execution terminates immediately. For a user, this is annoying since
it implies that you discover errors in the script one at a time. We want the DSL processing to
behave like a conventional language compiler and make a best effort to process the entire text to
discover multiple errors in one pass.

A close look at evalLambda shows how the complete script can be evaluated.
1 variable evalLambda {{body} {
2 upvar #0 ::micca::@Config@::errcount errcount



3 upvar #0 ::micca::@Config@::configlineno configlineno
4 set lineno $configlineno
5 set command {}
6 foreach line [split $body \n] {
7 append command $line \n
8 incr lineno
9 if {[info complete $command]} {

10 try {
11 eval $command
12 } on error {result} {
13 set cleancmd [CleanUpCommand $command]
14 log::error "line $configlineno: \"$cleancmd\":\n\"$result\""
15 incr errcount
16 }
17 set command {}
18 set configlineno $lineno
19 }
20 }
21 if {$command ne {}} {
22 set cleancmd [CleanUpCommand $command]
23 log::error "line [expr {$lineno - 1}]: end of script reached in the\
24 middle of the command starting at line $configlineno: $cleancmd"
25 incr errcount
26 }
27 return $errcount
28 }

line 6 The strategy is to split the script body into lines.
line 7 Lines are accumulated into a command.
line 9 The info complete command is used to determine if the accumulated command is

potentially complete. If so, then it is evaluated. If not, then the next line is appended and
another try is made.

line 10 Any errors that occur in the command evaluation are caught by the try command. After
some bookkeeping, evaluation continues on the next line of the body.

Relational structured data

The primary purpose of micca is to generate “C” code that implements the model specified by
the DSL. The DSL is used as a text-based user interface to populate a platform specific model for
the Executable UML execution rules as they are realized in the “C”-based target software platform.



The following figure shows a small fragment of the micca platform specific model.
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There are 86 classes and 78 relationships in all in the micca platform specific model. Micca uses
the rosea package to manage the platform model. Rosea is similar in intent as micca except
the translation is targeted at Tcl as the implementation language rather than “C”.

Rosea uses a DSL similar to that of micca. The differences arise from the use of Tcl as a target
and that rosea is based on TclRAL which directly supports the identity and referential integrity
implied by the constructs in the class diagram. These integrity checks, provided by formalizing
the micca platform model using rosea, are an important part of the DSL processing. The DSL
commands insert their data into the appropriate classes in the micca platform. The data is
inserted during a transaction and any violations of the integrity of the data relationships are
detected at the end of the transaction. This level of data checking, provided automatically by
TclRAL, would otherwise have to be coded into the micca application itself. The burden of
coding integrity checks into the application is particularly acute when faced with changes to the
underlying platform model.

The class diagram fragment for the micca platform model can be transliterated into the following
rosea script.

1 class Domain {
2 attribute Name string -id 1\
3 -check {[::micca::@Config@::Helpers::isIdentifier $Name]}
4 attribute Interface string -default {}
5 attribute Prologue string -default {}
6 attribute Epilogue string -default {}
7 }
8 class DomainElement {
9 attribute Domain string -id 1

http://repos.modelrealization.com/cgi-bin/fossil/mrtools/wiki?name=RoseaPage
http://repos.modelrealization.com/cgi-bin/fossil/tclral/index


10 attribute Name string -id 1\
11 -check {[::micca::@Config@::Helpers::isIdentifier $Name] &&\
12 ![::regexp -- {__[A-Z]+\Z} $Name]}
13 reference R1 Domain -link {Domain Name}
14 }
15 association R1 DomainElement 0..*--1 Domain
16 class Class {
17 attribute Domain string -id 1 -id 2
18 attribute Name string -id 1
19 attribute Number int -id 2
20 reference R2 DomainElement -link Domain -link Name
21 reference R104 ValueElement -link Domain -link Name
22 }
23 class Relationship {
24 attribute Domain string -id 1 -id 2
25 attribute Name string -id 1
26 attribute Number int -id 2 -system 0
27 reference R2 DomainElement -link Domain -link Name
28 }
29 class ExternalEntity {
30 attribute Domain string -id 1
31 attribute Name string -id 1\
32 -check {[::micca::@Config@::Helpers::isIdentifier $Name]}
33 reference R2 DomainElement -link Domain -link Name
34 }
35 generalization R2 DomainElement Class Relationship ExternalEntity

line 13 Describes the {R1} annotation on the Domain attribute of the Domain Element class
shown in the diagram. The reference command, occurring within the definition of the
DomainElement class, states that DomainElement contains a referential attribute that
realizes the R1 association to Domain by “linking” the Domain attribute in DomainElement
to the Name attribute in Domain. By linking, we mean that the value the Domain attribute
of any instance of DomainElement must be equal to the value of the Name instance for
some instance of the Domain class. Rosea uses TclRAL to enforce this constraint on the
attribute values.

Parsing “C” type names

It is necessary for micca to understand some aspects of “C” data types. It must be able to
generate “C” code that declares variables and so must be able to parse a “C” data type name.



For example, the attribute command we saw in the washing machine control section requires a
“C” type name as an argument. Micca validates the argument as a proper “C” type name and
uses the type name later in code generation. To accomplish parsing type names, micca uses the
Parser Tools from tcllib. The parser tools use a Parsing Expression Grammar (PEG) to specify
the generation of a parser. We do not describe the background of PEGs here, but note that PEGs
are not able to represent left-recursive grammars and this will entail some transformation of the
usual formulation of “C” as a left-recursive grammar (typically LR(1) that is used to generate a
parser from yacc or bison).

The PEG used by micca was derived from a full C99 PEG written by Ian Piumarta. Since
micca only parses type names, the grammar was condensed to those portions used by micca and
translated to the PEG syntax used by the Parser Tools. The grammar file is too long to present
here in its entirety, so we discuss only selected parts.

The following is the first set of grammar productions for the type name parser.

PEG datatype (type_name)
type_name <-

specifier_qualifier_list abstract_declarator? EOF ;

abstract_declarator <-
pointer? direct_abstract_declarator /
pointer ;

direct_abstract_declarator <-
direct_abstract_declarator_head direct_abstract_declarator_tail* ;

direct_abstract_declarator_head <-
LPAREN abstract_declarator RPAREN /
direct_abstract_declarator_tail ;

direct_abstract_declarator_tail <-
array_declarator /
LPAREN parameter_type_list? RPAREN ;

array_declarator <-
LBRACKET assignment_expression? RBRACKET /
LBRACKET STAR RBRACKET ;

pointer <-
(STAR type_qualifier_list?)+ ;

type_qualifier_list <-
type_qualifier+ ;



declaration_specifiers <-
storage_class_specifier declaration_specifiers? /
type_specifier declaration_specifiers? /
type_qualifier declaration_specifiers? /
function_specifier declaration_specifiers? ;

specifier_qualifier_list <-
(type_specifier / type_qualifier)+ ;

# ... and many more grammar statements
#
#

END ;

Because of the peculiarities of “C” type names there is a fundamental ambiguity in “C” related to
type names. We can show the ambiguity as follows.
unsigned long var1 ;
typedef unsigned long ulong ;
ulong var2 ;

The typedef statement in “C” can introduce a new name (or alias) for a type. In this example,
var1 and var2 have the same data type, but syntactically we must parse ulong as a type name.
“C” uses syntax for variable declarations that is intended to remind you of the type of the value
held by the variable when it is used in an expression. In this example, when using var1 in an
expression you know its type is unsigned long. A “C” compiler usually deals with this ambiguity
by augmenting the set of valid type names for the lexical analyzer when the typedef statement
is recognized.

Since micca does not parse the passed through “C” code for activities and since the internals of
the parser generated from the PEG are not generally accessible, the usual compiler solution is not
available to us. Micca resolves this by directly recognizing all the standardized type names (e.g.
int8_t, uint8_t, etc.) and by using a naming convention.

type_specifier <-
int8_t / int16_t / int32_t / int64_t / int_least8_t / int_least16_t /
int_least32_t / int_least64_t / int_fast8_t / int_fast16_t / int_fast32_t /
int_fast64_t / void / char / short / int / long / float / double /
signed / unsigned / _Bool / bool / _Complex / complex / _Imaginary /
imaginary /
uint8_t / uint16_t / uint32_t / uint64_t / uint_least8_t / uint_least16_t /
uint_least32_t / uint_least64_t / uint_fast8_t / uint_fast16_t /



uint_fast32_t / uint_fast64_t / intptr_t / uintptr_t / intmax_t /
uintmax_t / size_t / ptrdiff_t /
struct_or_union_specifier / enum_specifier / typedef_name ;

typedef_name <-
<upper> <alnum>* '_t' WHITESPACE /
'MRT_' <alnum>+ WHITESPACE ;

The naming convention recognizes the type names used by the micca run-time (those type names
starting with MRT_) as well as any type names that start with an upper case character followed by
alphanumeric characters and finally ending in an _t suffix.

With this resolution of the ambiguity, the parser generated by the parser tools from the PEG can
recognize all “C” type specifications. For example, int (*)(void) specifies a type which is a
pointer to a function accepting no arguments and returning an int. Parsing this type specification
results in the following abstract syntax tree (AST).

<type_name> :: 0 12
<specifier_qualifier_list> :: 0 3

<type_specifier> :: 0 3
<int> :: 0 3

<abstract_declarator> :: 4 12
<direct_abstract_declarator> :: 4 12

<direct_abstract_declarator_head> :: 4 6
<LPAREN> :: 4 4
<abstract_declarator> :: 5 5

<pointer> :: 5 5
<STAR> :: 5 5

<RPAREN> :: 6 6
<direct_abstract_declarator_tail> :: 7 12

<LPAREN> :: 7 7
<parameter_type_list> :: 8 11

<parameter_list> :: 8 11
<parameter_declaration> :: 8 11

<declaration_specifiers> :: 8 11
<type_specifier> :: 8 11

<void> :: 8 11
<RPAREN> :: 12 12

In this representation of the AST, the token name is given followed by the starting and ending offsets
into the parsed string. With the parsed AST, a variable of this type can be declared by walking the
tree and finding the correct offset where the variable name must be inserted. In this example, insert-
ing a variable name after the <STAR> token of the <direct_abstract_declarator_head> (i.e.
after the character at offset 5) results in a valid variable declaration, e.g. int (*funcptr)(void).



Code generation

The code generated by micca falls into two broad categories:

1. Declaration of data structures and initialized variables such as classes and state model
transition tables. The code generated for this has no executable component, providing the
run-time code with the data it uses to implement domain specific behavior.

2. Activity code that represents the processing performed by the model. This is typically code
supplied by a user that is packaged into “C” functions.

To accomplish the code generation, micca uses the textutil::expander package from tcllib.
The expander package provides conventional template expansion functionality where ordinary text
is passed to the output and embedded commands are executed, passing the result of the command
to the output. A separate template is used for each of the categories of generated code described
above.

Generating the domain header file

For each domain, micca generates two files: a “C” header file containing interfacing information
and a “C” code file containing the executable portion of the model translation. In this example,
we show part of the header file generation to illustrate one use of template expansion.

The following is the expansion template used to the generate “C” header file for a domain.
1 set headerTemplate {
2 <%banner%>
3 #ifndef <%headerFileGuard%>
4 #define <%headerFileGuard%>
5 #include "micca_rt.h"
6 #include <assert.h>
7 <%interface%>
8 <%interfaceTypeAliases%>
9 <%domainOpDeclarations%>

10 <%externalOpDeclarations%>
11 <%eventParamDeclarations%>
12 <%portalIds%>
13 <%portalDeclaration%>
14 #endif /* <%headerFileGuard%> */
15 }

The strings used to mark the beginning and end of a command have been set to <% and %> for this
expansion. A procedure is defined for each command in the template. “C” requires substantial
type annotation and declarations usually must appear before the definitions of the code and



data. The ordering of the expansion commands in the header template is contrived to match the
requirements of the “C” compiler to insure that components are declared before they are defined.

The general pattern of the template expansion procedures is to query the underlying micca platform
model and construct a string containing the required “C” language statements. Rosea provides
the necessary commands to query the platform model and TclRAL provides a complementary set
of commands to operate on the relation values obtained from the query. The generated language
statements are returned as a string by the procedure and the template expansion code replaces
the command in the template with the procedure result.

As an example of this pattern, we examine the declaration of domain operations by the
domainOpDeclarations procedure from line 9 of the header template. A Domain Operation is
a “C” function provided by the domain model as the means to access some aspect of the domain.
The set of domain operations forms the primary programming interface to the domain.

1 proc domainOpDeclarations {} {
2 variable domain
3 set result [comment "Domain Operations External Declarations"]
4

5 set opRefs [DomainOperation findWhere {$Domain eq $domain}]
6 set params [deRef [findRelated $opRefs ~R6]]
7 set ops [pipe {
8 deRef $opRefs |
9 relation project ~ Domain Name ReturnDataType Comment |

10 relation rename ~ Name Operation |
11 ralutil::rvajoin ~ $params Parameters
12 }]
13

14 relation foreach op $ops {
15 relation assign $op
16 if {$Comment ne {}} {
17 append result [comment $Comment]
18 }
19 set plist [relation list $Parameters DataType -ascending Number]
20 set pdecl [expr {[llength $plist] == 0 ?\
21 "void" : [join $plist {, }]}]
22 append result "extern $ReturnDataType\
23 ${Domain}_${Operation}\($pdecl\) ;\n"
24 }
25

26 return $result
27 }

line 5 Find the Domain Operations for the domain whose code is currently begin generated



(stored in the domain variable).
line6 Find the parameters of the Domain Operation by traversing the R6 relationship. In the

micca platform model, R6 associates a Domain Operation to zero or more formal Domain
Operation Parameters.

lines 7-12 This series of commands creates a relation having an attribute that is also a relation
value. If the Domain Operation has parameters, then the Parameters attribute is a non-
empty relation value with a heading containing the Name, Number, and Data Type of the
parameter. Otherwise, the Parameters attribute is the empty relation value with the same
heading. This is the relational equivalent of an outer join and does not depend upon NULL
values. Note, the pipe command rewrites the sequence of commands in such a way that
the result of one command is used directly as an argument to the next command.

line 19 Since “C” is a language that supplies function arguments by position, the parameters are
ordered by the number assigned to them when they were specified in the DSL.

line 22 Note that we prepend the domain name to the operation name in order to avoid naming
conflicts in the global namespace. Naming conventions are necessary for a a language like
“C” which does not have support for sophisticated module or name segregation.

For our example washing machine control domain, the following is the portion of the header file
generated by the domainOpDeclarations procedure.
/*
* Domain Operations External Declarations
*/

extern int wmctrl_createWasher(char const *) ;
extern bool wmctrl_deleteWasher(char const *) ;
extern bool wmctrl_startWasher(char const *) ;
extern void wmctrl_selectCycle(char const *, char const *) ;
extern void wmctrl_init(void) ;

Generating state activity code

In Executable UML, most of the computing for the domain happens as part of the actions
associated with a state model. In our example model, part of the lifecycle of a washing machine
is to fill the clothes tub with water before starting the washing agitation. This happens in the
Filling To Wash state.

There are many ways to express, in an implementation independent fashion, the computations
that are required to fill the clothes tub. Here we use a pseudocode that expresses the model level
processing.

Filling To Wash action language

# Fill the tub with wash water.

https://executableuml.org/scrall-lang/


wc .= /R4
ct .= /R1
Fill(temp : wc.WashWaterTemp) -> ct

This pseudocode states:

1. Traverse the R4 association to find the related instance of Washing Cycle and call that
instance wc.

2. Traverse the R1 association to find the related instance of Clothes Tub and call that instance
ct.

3. Signal the Fill event to the related Clothes Tub instance and use the value of the WashWa-
terTemp attribute in the related Washing Cycle as the argument to the Fill event which
determines the temperature of the water that should be placed in the Clothes Tub.

The platform independent action from above is translated into a platform specific action before
it is passed to micca. State activities usually consist of model level actions, such as traversing
relationship and signaling events, and conventional expression evaluation and control of the
execution flow. Micca supplies an embedded command language to handle model level actions
and relies on a programmer to transcribe action pseudocode into the embedded command language
combined with “C” expressions and flow of control. For the Filling To Wash state, this transcription
is as follows.

Filling To Wash micca source
1 state FillingToWash {} {
2 <%my findOneRelated wc R4%>
3 <%my findOneRelated ct ~R1%>
4 <%instance wc assign {WashWaterTemp washtemp}%>
5 <%instance ct signal Fill temp washtemp%>
6 }

The embedded commands, again marked by <% and %> are expanded using the textutil::expander
package to generate the code that is placed in the domain “C” code file. In this case, a different
instance of an expander is used than the one for the header and code expansions. In fact, the two
expansions are proceeding at the same time since generating the code file for a domain involves
generating the state activity functions which are placed in the code file.

The result of the expansion is the following “C” function.

Filling To Wash generated “C” code
1 static void
2 WashingMachine_FillingToWash__ACTIVITY(
3 void *const s__SELF,
4 void const *const p__PARAMS)
5 // <%my findOneRelated wc R4%>



6 // <%my findOneRelated ct ~R1%>
7 // <%instance wc assign {WashWaterTemp washtemp}%>
8 // <%instance ct signal Fill temp washtemp%>
9 {

10 #define MRT_STATENAME "FillingToWash"
11 MRT_INSTRUMENT_ENTRY
12 struct WashingMachine *const self = s__SELF ;
13 #line 72 "wmctrl.micca"
14 // instance self findOneRelated wc R4
15 struct WashingCycle *wc ;
16 struct WashingCycle *t__T1 = self->R4 ; // R4
17 wc = t__T1 ;
18 // instance self findOneRelated ct ~R1
19 struct ClothesTub *ct ;
20 struct ClothesTub *t__T2 = self->R1__BACK ; // ~R1
21 ct = t__T2 ;
22 // instance wc assign {{WashWaterTemp washtemp}}
23 WaterTemp_t washtemp ;
24 washtemp = wc->WashWaterTemp ;
25 // instance ct signal Fill {temp washtemp}
26 MRT_ecb *t__T3 = mrt_NewEvent(2, ct, self) ; // Fill
27 struct wmctrl_ClothesTub_Fill__EPARAMS *const t__T4 =
28 (struct wmctrl_ClothesTub_Fill__EPARAMS *)t__T3->eventParameters ;
29 t__T4->temp = washtemp ;
30 mrt_PostEvent(t__T3) ;
31 #undef MRT_STATENAME
32 }

line 11 Macros are inserted to facilitate instrumenting the entry into a state action function.
A preprocessor define is used to control what, if any, code is inserted for instrumentation
purposes.

line 13 Optionally, micca will insert #line directives to reference any compiler messages back
to the micca source.

line 16, 20 In the micca generated “C” based implementation, traversing a singular association
(R4 and R1 in this case), is implemented using a pointer stored in the class structure.

lines 26-30 Signaling an event which passes an argument is implemented by requesting an event
data structure from the run-time code, assigning the argument value into the data structure,
and requesting the run-time to post the event.

Note that there may seem to be a number of variable declarations and assignments that are not
strictly necessary. They arise because relationship traversal may be chained together in a single
findOneRelated command and the last traversal in the chain is the desired related instance. In



this case, the chain is only a single relationship. Any reasonable optimization levels for the “C”
compiler will remove the superfluous variables and assignments.

Space does not allow discussing the template expansion procedures that generate code. They are
considerably more complicated as they perform validation of the request against what is allowed
by the micca platform model and they must track a symbol table of “C” variables. However, the
interested reader can find the complete source code and descriptions of all the code generation
procedures in the micca documentation.

Summary

Micca is an abstract application, taking a specification of an executable software model and
generating the code and data needed to build a program that behaves in accordance with the
model. It uses several Tcl technologies to accomplish this.

1. Tcl is an interpreted language that can hold a representation of source code in a variable
and execute it at run time. This combined with namespaces makes building declarative
styled DSLs much easier. The simplicity of Tcl syntax means that it is not necessary to
build a conventional grammar for a DSL having a more complex syntax.

2. Complicated data structures can be held as relation values using rosea. This allows building
a large set of declarative data constraints that need not be added as data validation code in
the application. Rosea also provides operations to search and navigate the classes of the
platform model and this capability is used in the code generation for micca.

3. Available parser generation tools allow specifying complex grammars by means of a PEG
and generating Tcl code that will parse the language. In micca, a PEG was used to parse
“C” type names.

4. Template expansion provides a report generation capability that can be used to generate
code. The internal micca model was queried by commands embedded in the template and
the query results are formulated as “C” language statements. This allows easy ordering of
the generated code to match the requirements of a “C” compiler.

Resources

Micca is freely available from either Model Realization or chiselapp.

http://repos.modelrealization.com/cgi-bin/fossil/mrtools/wiki?name=MiccaPage
http://chiselapp.com/user/mangoa01/repository/mrtools/wiki?name=MiccaPage
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