
Tcl Capacities in Crisis for EDA

By

Phil Brooks - Mentor Graphics Corporation

&

Sridhar Srinivasan - Mentor Graphics Corporation

Presented at the 23nd annual Tcl/Tk conference, Houston Texas,
November 2016

Mentor Graphics Corporation
8005 Boeckman Road
Wilsonville, Oregon
97070
phil_brooks@mentor.com

sridhar_srinivasan@mentor.com

Abstract: Tcl has been a significant component in many EDA
applications for many years and it still remains so today. It has
worked well, despite the various limits on data structure sizes,
because previously, in cases where there were large data sets,
native C++ data structures have been used while Tcl worked around
the edges, dealing with reasonable small subsets of data, control
files, data structures, and meta-data. With the latest integrated
circuit manufacturing technologies, even these previously limited
data sets are frequently exceeding Tcl's internal size limits like the
maximum size of a list, maximum size of string, etc. As EDA goes,
the rest of the industry follows, so the number of applications that
can reasonably expect to create very large lists, arrays, strings etc.
is quickly growing.

The body of the paper discusses several real cases cases where
what used to be reasonable subsets of design data that could easily
be expected to be limited to within a fairly small size have suddenly
grown to exceed the limits on size of a Tcl list, array, or string. We

mailto:phil_brooks@mentor.com

will look at recent trends in EDA analysis for both the aggregate
data (things like the number of devices or nets in a chip design) as
well as trends in the size of what used to be 'safe' data sets for Tcl -
like the number of devices in a cell on a net, or the number of
polygons in a cell on a net, or the length of a verification program
deck, the number of cells in a design etc. and show that even
reasonably small subsets of data are frequently growing to exceed
the limits imposed by Tcl. In addition, customers are requiring more
ad hoc exploration and analysis of their designs - these sorts of
analysis are ideally suited toward analysis using Tcl.

It is critical today for the EDA industry today that we start moving
toward a Tcl 9 implementation that removes all of the historical 32
bit size limitations.

Mentor Graphics Calibre Verification Tool
The Calibre design verification tool is used by chip designers to
programmatically verify their chip designs using several different analysis
applications. These applications share a common database and a set of
geometric analysis algorithms that are used to perform the following
functions, among others:

 Design Rule Checking (DRC) – Measures design features and checks
these measurements against predetermined constraints of a
semiconductor manufacturing technology.

 Layout vs. Schematic comparison (LVS) – Uses descriptions of signal
connectivity and device construction in a design to turn purely
geometric layout database input into a full device schematic. Then
that device schematic is compared to the engineering schematic
(source netlist) to see if they are electrically equivalent. Tcl is used
extensively within the LVS application for rule deck construction and
property calculations and comparisons.

 Parasitic Extraction (PEX) – Calculate resistance and capacitance of
design components and add these to the intentionally constructed
device schematics derived during LVS.

 Programmable Electrical Rule Checking (PERC) – Programmatically
accesses the LVS netlists using a Tcl based command language to
check electrical constraint conditions.

Tcl is used in Calibre to construct rule check decks as well as for certain
property calculation operations. Calibre Perc uses Tcl extensively as a
command language. The following case studies show several situations,
encountered over the last year, that illustrate the explosion is size of some of
the data sets that have been amenable to Tcl in the past, but that are now
nearing or going beyond the hard limits on Tcl data structures and causing
performance problems or runtime product crashes. We also explore some
of the ways that small problems can turn into large ones when large data
structures are copied inadvertently within a Tcl program.

EDA Trends
Several trends are causing an explosion of design data required for typical
EDA designs that go beyond the simple increase in the number of devices
and nets involved in the design:

 Feature size – This is the expected change in manufacturing
technology feature size from the familiar march of Moore’s law.
Reducing feature size allows creation of more devices on a chip. Here
is some information on manufacturing feature sizes that have been
made available over the past years:

top Tech Transisto
rs

Cell
Count

Max
Nets/Cell

Device
Types

ESD Check Pin
Pairs

2005 65m
n

250
million

2007 45n
m

500
million

2009 32n
m

1 billion 200,000 3 million 100 400,000

2011 22n
m

2 billion

2013 16n
m

4 billion 500,000 6 million 200

2016 10n
m

7 billion 4 billion 6 million

2017 7nm 9 billion 19 million

Transistor counts are on the leading edge implementations and
typically grow over the life of a particular technology. More complete
information is available at
https://en.wikipedia.org/wiki/Transistor_count.

 Increased device complexity – The newest device technology, being
used at 16nm and below, are called FINFET devices. These devices are
much more complex than previous generation devices and there are
special construction artifacts that are required in the design files to
construct these. In the end, this means that there is a lot more
polygon data required to create a single device or group of devices.

 Increasingly complex POWER delivery network – In order to manage
power in modern devices, a great deal of complexity has been added
to the way modern chips are powered. More available voltages and
more switchable power domains offer a mechanism to provide different
parts of the chip with different voltages and to turn parts of the chip off
at different times rather than the old one size fits all approach. These
also lead to a big increase in the number of types if devices that
designers must use to manage power efficiently.

 Increasingly complex planarity requirements – Semiconductor
manufacturing processes require that certain design layers, like metal
and polysilicon, have fill polygons present to meet density and

https://en.wikipedia.org/wiki/Transistor_count

planarity manufacturing constraints. These don’t serve a function on
the chip, but they are required for manufacturing processes like
chemical-mechanical planarization or polishing so that the polishing
results in even planar surfaces without dishing or bumping as a result
of mixed materials on the surface being polished. Requirements for fill
are much more complex now than in past designs. This often results in
design flattening – where repeated design entities that used to be
represented in a hierarchical fashion are now represented in a more
flat repeated fashion. That results in larger datasets and

 Increased complexity of Electro Static Discharge (ESD) protection
circuits – During the manufacturing process, static electricity can be
discharged onto the chip. If this shock carries high enough voltages to
sensitive circuitry on the chip, it can overload it and destroy that
portion of the chip. To protect against this, ESD protection circuits are
constructed around the I/O pads on the chip. While the feature size of
the devices on the chips goes down, the size of potential ESD shocks
remains fairly constant. As a result, it takes a lot more protection
circuitry to absorb a similarly sized discharge. Protection circuits that
used to consist of a few dozen diodes and transistors in 65mn chips
have grown to hundreds of thousands of diodes and transistors in
28nm chips.

EDA Case Study – Moderately large string becomes too
large for Tcl
One common technique in our Perc Electrical Rule Checking (PERC) check Tcl
programs is to perform voltage dependent spacing checks that require
placing properties like potential voltages on specific nets in a design and
then performing analysis on those nets. Initially the number of nets that
were marked with these voltage markers were fairly limited. As a result, the
following algorithm was used:

 Identify specific locations for voltage markers in the design
 Create markers using a command syntax for creating markers at a

specific location having a specific voltage range. This command
syntax looked like this:

 Marker_layer = DFM CREATE LAYER POLYGON NODAL [
 2 831.234 234.290 831.236 234.292 cell CELL1 net 1

 2 431.234 34.290 431.236 34.292cell CELL2 net 2

]

 Feed the marker string to a Tcl command that would create the
markers in our internal database.

 Analysis was performed on the markers and results were presented.

For the original 65nm designs that used this check, several hundred
thousand of these markers might typically be generated. This technique is
capable of working with the hierarchy of a design, so that a single marker
can be placed on a net that is replicated throughout the design very
efficiently by simply creating one marker on the un-replicated net. Recently,
in a 20nm design (2014 technology) a customer was found instead to be
placing a large number of voltage markers at a high level in the design in
order to account for minor voltage differences in a few specific areas. For this
case, several hundred million markers were created. As a result, the
command file expanded to well beyond the 2GB Tcl string limit and a crash
resulted.

Mitigation
C++ interfaces were developed to break up the groups of nets by their
voltage ranges in order to handle nets in smaller groups. The marker
commands were written to a file on disk and then that file was opened and
the markers were created one at a time.

EDA Case Study – Rule Deck Size
The first case follows ramifications of the growth in size of the Calibre rule
deck. The rule deck is essentially a program that tells a Calibre application
how to go about its analysis of a customer design. Rule decks have been
growing substantially as new technologies require more and more in depth
analysis, devices become more complex, and process design rules become
more stringent. Rule decks have grown from .5-1 k bytes 20 years ago, to
2-4 megabytes bytes now, but recently additional application data was
added into the rule deck resulting in rule files that weighed in at 1GB in size.
As a result, Tcl code that could previously easily examine a rule deck, copy it,

generate some new rules etc. would not run into any problems. Once the
new 1GB rule decks started going through the same code, customers saw
severe performance issues that weren’t easy to correct.

For example, one rule deck analysis function looked roughly like this:

Turn the entire rule file text into a Tcl string
set db_rules [dfm::get_svrf_data $db_rules_obj -freeze]

Now, take the single string and split it into a list of lines
foreach line [split $db_rules '\n'] {
 ...
}

The net effect of the above is to take the 1GB in memory copy of the rulefile,
copy it into a Tcl string (+1GB) and then split that into a list of single line
strings (+1.7GB). As a result of making several passes through that analysis,
our extra 1GB of file input data turned into over 20GB of process size. In this
case, Tcl handled everything fine, because no single piece of data was never
beyond 1GB.

Mitigation
One possible way to avoid some additional memory usage might be to use
the string package to avoid splitting the big returned string into a list. So, for
example, the following code might be used to look at the big returned string
line by line, but avoid splitting it into a list by using ‘string first’:

 set end [string length $bigstring]
 set curr 0
 while { $curr < $end } {
 set last [string first "\n" $bigstring $curr]
 if { $last == -1 } {
 set last $end
 }
 set line [string range $bigstring $curr $last]
 puts -nonewline $outfile "$line"
 set curr $last
 incr curr
 }

We found that this, counterintuitively, also requires significant additional
memory. After a query on comp.lang.tcl, Don Porter found that this
additional memory occurs because the string is converted into a Unicode
string by the ‘string first’ command. Don believes that an optimization that
avoids conversion to Unicode is possible in this case.

Another work around that currently avoids the conversion to Unicode is
possible with ‘string index’:

 set end [string length $bigstring]
 set curr 0
 set last 0
 while { $curr < $end } {
 set c [string index $bigstring $curr]
 if { [string match $c "\n"] } {
 set line [string range $bigstring $last $curr]
 puts -nonewline $outfile "$line"
 set last $curr
 incr last
 }
 incr curr
 }

This approach is significantly slower than the previous approaches – likely
due to the bytecode execution of the loop vs. ‘C’ execution in ‘string first’.

This particular problem was solved by avoiding making the initial copy of the
rule text string. C++ interfaces were developed to provide access to the
parsed rulefile structures that were needed, so the call to dfm::get_svrf_data
$db_rules_obj –freeze was removed along with the list based look through
each line of the rule deck.

EDA Case Study – Number of devices on a single net
While the complexity of the power supply on a modern chip keeps the
number of devices on a single power net from getting too high, many
modern chips are using a single ground net for the entire chip. As a result,
the number of devices on that single ground net has grown very significantly.

An application that created a list of all devices on the ground net in our Perc
application looks like this:

set result_list [perc::count –net $net –list]

Since most of the devices on the chip have a connection to ground, the
resulting list length now frequently surpasses the length of a Tcl list.

Mitigation
This problem was solved by returning an “iterator” – which is a Tcl command
object that allows you to access what would have been items in the list one
by one. So, instead of writing:

set result_list [perc::count –net $net –list]

foreach item $result_result_list {

 ...

}

Now you write:

set result_iter [perc::count –net $net –iter]

while { $result_iter } {

 ...

 dfm::incr result_iter

}

EDA Case Study – Net Voltage checks
One ramification of the complex power networks that drive chips today is
that there are different voltages running in different parts of the chip. This
leads to the need for design rules where net spacing depends upon voltage
present on the net. That leads to a need to check, for each electrical net on
the chip, to see if it is too close to incompatible voltages. Our solution for
doing this involved creating a large Tcl array that used Cell name and Net
name as a key and contained a complex nested list of a couple dozen short
numbers and strings as the array values. As the designs grew, we found
that adding net specific data to the large array slowed significantly as the
size of the size of the array grew:

0 500000000
0

10

20

30

40

50

60

Size of Tcl Array

Seconds to add 600k Entries

Reproducing this slowdown in a standalone Tcl script proved tricky. Simply
creating a similarly sized list using similar keys and similar data payload
showed very flat results as the size of the array grew:

0 50000000 100000000
0

10

20

30

40

50

60

70

Size of Tcl Array

Seconds to add 600K entries

Varying the key length and payload size did nothing to alter the performance
curve. In the end, the native application data was all written to disk and
converted into straight Tcl so as to avoid any dependency on the Calibre
application and to figure out exactly what was causing the significant

slowdown. In the end, the slowdown was called by the instrumentation code.
It appears that frequent calls to the ‘array size’ command can have a severe
adverse performance impact on insertions into the array being called:

0 50000000 100000000 150000000
0

100

200

300

400

500

600

Size of Tcl Array

Insertion Time

2015 WIP Revisited
In the 2015 conference, I presented a Work-In-Progress presentation that
foreshadows this presentation – several data capacity issues were presented.
This section revisits those limits and progress made on solving them in the
8.6.4 release.

Sourcing a large (>2gb) file:
This script will generate a very large file:

set outfile [open "big.tcl" w]
set count 120000000
set current 0
while { $current != $count } {
 puts $outfile "# a comment $count"
 incr current
}

puts $outfile "puts \"hello world\""

This still results in a core dump in Tcl 8.6.4, though a nice message is printed
now. The size of the script that can be executed is now larger.

$ /usr/local/ActiveTcl-8.6/bin/tclsh big.tcl
max size for a Tcl value (2147483647 bytes) exceeded
Aborted (core dumped)

This creates such a problem for some of our customers that we have
overloaded the source command with a line-by-line readin that doesn’t have
to create a string first.

Large List behavior
The following script used to slowly bog down as the limit on the size of a list
was approached:

Create a list with a billion elements

set i 0
set init_size 200000000

Start with a fixed size allocation
set my_list [lrepeat $init_size ""]

set count 0
set t0 [clock seconds]

Populate fixed size with data
while {$i < $init_size} {
 lset my_list $i "List element $i"
 incr i
}

Now grow that list.
while {$i < 1000000000} {
 lappend my_list "List element $i"
 incr count
 if { [expr {fmod($count, 100000000)}] == 0.0} {
 # Show progress every 100 million elements
 set tnow [clock seconds]
 puts "elapsed time: [expr { $tnow - $t0 }] seconds"
 puts [llength $my_list]
 } elseif { $count > 403000000 } {
 # Show progress more incrementally

 if { [expr {fmod($count, 1000)}] == 0.0} {
 set tnow [clock seconds]
 puts "elapsed time: [expr { $tnow - $t0 }]
seconds"
 puts [llength $my_list]
 }
 }
 incr i
}

The allocations now go up to the limit without slowing down:

$ /usr/local/ActiveTcl-8.6/bin/tclsh list_limit_2.tcl
elapsed time: 455 seconds
300000000
elapsed time: 647 seconds
400000000
elapsed time: 838 seconds
500000000
max length of a Tcl list (536870909 elements) exceeded
 while executing
"lappend my_list "List element $i""
 ("while" body line 2)
 invoked from within
"while {$i < 1000000000} {
 lappend my_list "List element $i"
 incr count
 if { [expr {fmod($count, 100000000)}] == 0.0} {
 ..."
 (file "list_limit_2.tcl" line 20)

Conclusion
Tcl has served the EDA industry well for many years and it is still very widely
used in many applications. However, the capacity limitations that were
initially nearly irrelevant and in recent years have become first minor
annoyances and then critical problems are on the verge of making Tcl
unusable for many EDA tasks. It is critical that we develop a fully scalable
set of data structures for Tcl 9.0 before this happens! Also, Tcl provides an
ideal scripting language for end user exploration and analysis in EDA design.
These end users are frequently completely unaware of the Tcl data size limits
and they have no ‘C’ or ‘C++’ recourse if their data structures blow up.

	Mentor Graphics Calibre Verification Tool
	EDA Trends
	EDA Case Study – Moderately large string becomes too large for Tcl
	Mitigation
	EDA Case Study – Rule Deck Size
	Mitigation
	EDA Case Study – Number of devices on a single net
	Mitigation
	EDA Case Study – Net Voltage checks
	2015 WIP Revisited
	Sourcing a large (>2gb) file:
	Large List behavior

	Conclusion

