
Presented at the 23rd Annual Tcl Developer’s Conference (Tcl’2016)

Houston, TX

November 14-18, 2016

Sean Deely Woods

Senior Developer

Test and Evaluations Solutions, LLC

400 Holiday Court

Suite 204

Warrenton, VA 20185

Practcl
Package Repository Automation for C

and Tcl

Version 1.0.1

Abstract
Practcl is a library of tools for assembling Tcl distributions, from within a Tcl script. It utilizes exec
combined with an object oriented recipe system to download, configure, compile, package, and install
extensions. Practcl also includes a build system, a markup language for generating C code, and facilities
to link executables, dynamic libraries, and static libraries.

Problem Statement
Any sufficiently developed Tcl based application eventually turns into its own Tcl distribution. Even the
Tcl core itself is a Tcl distribution1. Many of us are fortunate enough to be able to farm out the job of
maintaining our distribution. Be it to the local Operating System, or ActiveState, or KBS, or KitCreator.
But when you sit down to compile any of the big boys, Aolserver, BRL-CAD, Androwish, or the like,
you’ll see that they build everything from the core on up by themselves. The product I work on, The
Integrated Recoverability Mode (IRM) does this as well.

Building extension distributions for Tcl is a dark art. In theory every extension builds the same way:

./configure ; make install

But that's only really useful for creating extensions to be installed in the local operating system. And only
on Unix2. And at no point does the standard address publishing what the software is, nor what it depends
on, nor a myriad of other questions a high level integrator needs to know.

More than information, much of the distribution maker's job is building a procedure. With a conventional
distribution, that automation can (and usually does) extend into 3 or 4 different languages, and generally
have to make quantum assumptions about the environment, the build tools available, and the intended
target for the build.

A lot of institutional knowledge that goes into building a Tcl distribution. Practcl is my effort to assemble
vocabulary for expressing that knowledge into a human edited, machine executable way.

What is Practcl?
The Package Repository Automation for C and Tcl (Practcl) is a model-based toolbox for assembling Tcl
extensions. For portability it is written in Tcl. And for sanity it was written from scratch to utilize native
support for TclOO. I set out to create something that fulfills the following goals:

1. Ships as a single file.
2. Is retrofit-able into existing TEA projects.
3. Plays well with others

Practcl ships with tools to perform the following tasks:
1. Download source code from Fossil, Git, Tarball, or Zip
2. Configure and compile extensions based on the following build systems: TEA3, Critcl, Swiss Army

Knife (SAK)3, Kettle, Practcl
3. Wrap Extensions for packaging in the TEAPOT.
4. Compile specially prepared extensions to be statically linked into a kit
5. Build self-contained Tcl based executables. (Using Zipvfs.)
6. Compile build products, libraries, and executables via exec calls directly from Tcl.

1 See: TIP#50, TIP#364, TIP#376

2 Native windows builds use something called nmake.
3 The installer for Tcllib, Tklib, Taolib

Practcl Internals
Practcl is made up of 67
procedures and 26 classes,
expressing 179 methods. At last
count, about 4632 lines of code.
That may seem like a lot, but the
Tcl.m4 file is around 4300 lines.
The configure files that tcl.m4
produces are on the order of
11000 lines. And the clock
command in the Tcl core is
actually implemented in a little
over 5000 lines of code. So its
not small, but as useful utilities
go, it's not overly huge either.

My first effort to jot it all down
everything there was to know
about Practcl was about 30 pages
(and counting). So I cut it down a
bit. Parties interested in the nitty
gritty details can download the
complete “Manual In Progress” at:

http://www.etoyoc.com/tcl/Practcl-Manual.pdf

The main operating principle of Pratcl is that an elephant is eaten one bite at a time. Each object spawned
by Practcl is a bite out of the elephant. The most complex behaviors are exhibited by the most primitive of
elements. The Practcl Metaclass, the mother of all objects, has lot of methods for expressing how objects
relate to one another. Because all of the objects share a common architecture, and expectation of behavior,
coordinating them is somewhat easier.

The classes that users call in scripts are the leviathans at the top of the hierarchy. They are seemingly
simple because their job is mostly to set in motion actions carried out by their subordinates. Many actions
in Practcl involve a top level object calling a herd of subordnates, who recursively call their subordinates,
and so on until an answer begin to bubble from the end points of the system back to the trunk.

Another principle of the Practcl architecture is divine procrastination. Practcl waits until a question is
asked before it starts assembling the answer. And it waits as long as possible before asking a question.
The effect is that vague problems that require vague answers are quick, easy, and computationally cheap
to solve. And when a complex problem requiring a complex answer is answered, the system works from
the bottom up to produce a complete and holistic answer.

In the two examples I have prepared (and a third that was left on the cutting room floor), you will see a lot
of object calling objects, searches through relational hierarchies, and aggregating data from disparate
sources.

Example 1: Implementing TIP#453
TIP#453 is a suggestion on my part that rather than relying on the contents of pkgs/ to be well behaved
TEA extension, we provide for the means for each package to include its own build instructions. And thus
open the world to non-TEA extensions. Included in these instructions will be routines for re-constituting
the pkgs/ file system for fresh Fossil checkouts.

The TIP also simplifies a complexity in the core’s source code. Currently the facility to assemble and
install the contents of the pkgs/ directory is repeated three times in the Core's build system. It appears
once in the Unix makefile, once in the MinGW makefile, and once again in the nmake build file.

Using practcl, we are going to replace about 30 lines of Makefile automation (x3 files) with three lines:
packages:
 $(TCL_EXE) $(PKGS_DIR)/make.tcl compile $$builddir

packages-install:
 $(TCL_EXE) $(PKGS_DIR)/make.tcl install $$builddir $(INSTALL_ROOT)

packages-tests:
 $(TCL_EXE) $(PKGS_DIR)/make.tcl tests $$builddir

The first step is figure out where we are in the operating system, load the practcl library, and nominate a
toplevel object:

set ::CWD [pwd]
set ::SRCDIR [file dirname [file dirname [file normalize [info script]]]
set ::TCLDIR [lindex $argv 1]
source [file join $::SRCDIR library practcl practcl.tcl]
::practcl::project create MAIN [::practcl::config.tcl $::TCLDIR]

The ::practcl::config.tcl statement performs a scan for build tool information from autoconf, a cross
compile script, and/or the local operating system. There are some items our project does need to discover
about the local environment. For instance: on windows we need to append .exe to any executable we
generate. And also, are we building for the local OS, or are we cross compiling?

We will then discover what packages are bundled with this distribution.

foreach path [glob [file join $::SRCDIR pkgs *]] {
 if {![file exists [file join $path configure]] && \
 ![file exists [file join $path prac.tcl]]} continue
 set name [file tail $path]
 set obj [MAIN add_project $name {}]
 if {[file exists [file join $path configure]]} {
 $obj define set [list install 1 class subproject.binary srcdir $path]
 }
 if {[file exists [file join $path prac.tcl]]} {
 $obj source [file join $path prac.tcl]
 }
}

The block of code above:

1) Ensures the directory contains at least a configure script or a prac.tcl driver file.
2) Build an object to represent the extension.
3) If the configure file is present Assume:

a. The srcdir of the object is that path
b. The extension is intended for installation,
c. The extension uses standard Tcl binary extension behaviors

4) If the prac.tcl file is present, have the object read the instructions within the file

With our packages defined, we can now go about the business of doing something with them, in response
to what the user requested via the command line. We will define them as procs in the ::do namespace, so
that exercising them and argument handling are as simple as defining a new proc.

namespace eval ::do {}
proc ::do::compile {TCLDIR args} {
 foreach pkg [MAIN link list project] {
 $pkg define set config_opts –with-tcl=$TCLDIR --with-tclinclude=[file join $::SRCDIR generic] {*}$args
 $pkg compile
 }
}
proc ::do::install {DESTDIR} {
 foreach pkg [MAIN link list project] {
 $pkg install $DESTDIR
 }
}
proc ::do::test {} {
 foreach pkg [MAIN link list project] {
 $pkg test
 }
}

And we can just keep tacking on ::do namespace procedures as we want to add more features. In the end
we place a command line handler:

Provide a polite handler
if {[info commands ::do::[lindex $argv 0]] eq {}} {
 puts “Unknown command: [lindex $argv 0]
 set list {}
 foreach cmd [info command ::do::*] { lappend list [namespace tail $cmd] }
 puts “Valid: $list”
 exit 1

}
Pass the arguments to the ::do namespace
::do::[lindex $argv 0] {*}[lrange $argv 2 end]

I realize line count isn't everything, but in 45 lines of Tcl code we have eliminated 60 lines of shell script,
30 lines of nmake, and managed to keep the user experience across all of our platforms uniform. It's a
slight improvement for managing the tasks that the core's build system already does.

Where the effort pays off is when we have to start adding packages that aren't TEA compliant. Let add
tcllib. Tcllib is not a TEA extension. It has it's own build system called SAK. So we'll now have to explain
to the core just how to install it. In addition to the Tcllib sources, we will add an additional file call
prac.tcl. Assuming we didn't have a driver already for SAK, we could write one on the fly:

my define class subproject

oo::objdefine self {
 method install DEST {
 set pkg [my define get pkg_name [my define get name]]
 my unpack
 set prefix [string trimleft [my <project> define get prefix] /]
 set srcdir [my define get srcdir]
 ::practcl::dotclexec [file join $srcdir installer.tcl] \
 -pkg-path [file join $DEST $prefix lib $pkg] \
 -no-examples -no-html -no-nroff \
 -no-wait -no-gui -no-apps
 }
}

 And even better, that same driver would be useful to any Practcl application.

Example 2: Building a Self-Contained Executable
In this section we will use Practcl to wrap a self-contained executable. This is normally black magic, but
with Practcl its… well easy isn’t quite the word I’d use to describe it. Perhaps grey alchemy?

Even though we are building a kit, our Pratcl script starts off very much like in Example 1:

set ::SRCDIR [file dirname [file normalize [info script]]]
source [file join $::SRCDIR tclconfig practcl.tcl]
set CWD [pwd]
::practcl::tclkit create BASEKIT [::practcl::config.tcl $CWD]
BASEKIT define set name toadkit
BASEKIT define set srcdir $::SRCDIR
BASEKIT define set builddir $::CWD
BASEKIT define set installdir [file join $CWD PKGROOT]
BASEKIT define set prefix /zvfs
BASEKIT define set sandbox [file dirname $::SRCDIR]
BASEKIT define set download [::pratcl::LOCAL define get download]
BASEKIT define set teapot [::pratcl::LOCAL define get teapot]

Our main object this time is called BASEKIT. This object is both of class ::practcl::tclkit which is a
descendant of ::practcl::library which is a descendent of ::practcl::project. The tclkit imbues the class
with the ability to link an executable and wrap a VFS onto it. The project class allows this object to take
on deputy objects and have them download, compile, package, etc external software.

This project is a project of projects, and is running without autoconf. As such we have to feed it a lot more
information than what was fed to our project in Example 1.

The define method is an access function to a per-object internal array. Each object can store its own
private configuration data, and because define is a public method, it can be accessed from other objects as
well.

You will see that some of the data that is going into BASEKIT are from methods of an command called
::pratcl::LOCAL. The ::pratcl::LOCAL command is actually an object that was created when Practcl was
loaded. It’s an object of type ::pratcl::project, but it is rigged to only deliver data that was auto-
discovered about the local operating system. The construction process for ::practcl::LOCAL includes
integrating user preferences preferences stored in a platform appropriate user directory.

Tclkits are a modified Tcl shell. We generate our shell from the Tcl/tk sources. Our first deputy we need is
one to manage a static Tcl core:

BASEKIT add_project TCLCORE {
 class subproject.core
 name tcl
 fossil_url http://core.tcl.tk/tcl
 tag release
 static 1
}

Each call to the add_package method creates a new deputy object. The first argument will be the name of
the project. The second is a key/value list of data that will go into the new project’s define store. An
optional third argument is interpreted as a call to ::oo::objdefine to modify the object. It’s a handy place
to replace methods with on-off implementation tweaks.

We can then exercise the new object’s methods to build our static Tcl:

Find the platform specific flags needed to make Tcl
set os [BASEKIT define get TEACUP_OS]
set tcl_config_opts [::practcl::platform::tcl_core_options $os]
lappend tcl_config_opts --prefix [BASEKIT define get prefix]
BASEKIT project TCLCORE define set config_opts $tcl_config_opts
BASEKIT project TCLCORE compile

Every command that starts with BASEKIT project TCLCORE is actually being performed by the object
representing the Tcl core.

For this example, we will be statically linking Tk into our shell, but not loading it on startup:

BASEKIT add_project TKCORE {
 class subproject.core name tk
 fossil_url http://core.tcl.tk/tk
 tag release
 static 1 autoload 0
 pkg_name Tk initfunc Tk_Init
}

tk_config_opts [::practcl::platform::tk_core_options $os]
set _TclSrcDir [BASEKIT project TCLCORE define get localsrcdir]
BASEKIT define set tclsrcdir $_TclSrcDir
lappend tk_config_opts --with-tcl=$_TclSrcDir
BASEKIT project TKCORE define set config_opts $tk_config_opts
BASEKIT project TKCORE compile

In our definition for the TKCORE you can see that it too is an object of type subproject.core. It we also
send it the static flag. Buy we also introduce three new flags: autoload, pkg_name, and initfunc. Our kit
builder will use this information later to compose the bootstrap for our executable. The effect will be
linking this extension to our executable statically. But instead of loading it at startup, we will advertise
this extension as a statically loaded package, and rig matters such that a package require Tk will ultimately
trigger the C function Tk_Init.

Let us add a few other extensions into our basekit:

BASEKIT add_project sqlite {
 tag trunk class subproject.binary pkg_name sqlite3 autoload 1
 initfunc Sqlite3_Init static 1 vfsinstall 0
 fossil_url http://cyqlite.sourceforge.net/cgi-bin/sqlite
}
BASEKIT add_project vectcl {
 tag master class subproject.binary vfsinstall 1 static 0
 git_url https://github.com/auriocus/VecTcl
}
BASEKIT add_project tcllib {
 tag trunk class subproject.sak vfsinstall 1
 fossil_url http://core.tcl.tk/tcllib
}

With our packages defined, we can now loop through them, exercising the methods that retrieve the
source, compile and install. The extra argument for define get allows us to provide a default value if
internally it is null.

foreach item [BASEKIT link list package] {
 $item unpack
 $item compile
 if {[string is true [$item define get vfsinstall 0]]} {
 $item install [BASEKIT define get installdir]
 }
}

And at last we need to construct our new kit’s bootstrap and link it:

BASEKIT implement $CWD
::practcl::build::static-tclkit \
 [file join $CWD toadkit_bare$::project(EXEEXT)] BASEKIT

After that command is run, you will see that Practcl has generated a .c and .h file named after your
project. The files are a custom boot process for your new shell. In addition to generating the bootstrap, the
static-tclkit file takes car of linking the final executable.

When we are ready to wrap our executable we can invoke:

file mkdir src/
set fout [open src/main.tcl w]
puts $fout {
puts {Hello World!}
package require Tk ; label .hello -text {Hello World!} ; pack .hello; vwait forever
}
close $fout
BASEKIT wrap $CWD hello hello.vfs src [BASEKIT define get installdir]

If we execute this script on the command line:

> tclsh make.tcl
> ./hello
Hello World!

Distribution
Practcl started as a branch in the Tclconfig project (http://core.tcl.tk/tclconfig), as a possible basis for TEA
4. At present, the master copy is maintained there, and it is currently mirrored to Tcllib and the tip_453
and core_zip_vfs branches of the Tcl core.

Practcl Users
Practcl is currenly employed to build the Integrated Recoverability Model. That system is, unfortunately
proprietary. However two of the open source projects IRM relies on also use Practcl:

http://fossil.etoyoc.com/fossil/odie – The Odie Kit builder

http://fossil.etoyoc.com/fossil/odielib – A C implemented accelerator for geometry problems

In addition to those, demonstration of Practcl are working their way into other projects:

http://fossil.etoyoc.com/fossil/sample - A practcl branch of the Tcl Sample Extension has been created to
demonstrate replacing makefiles with Practcl.

http://fossil.etoyoc.com/fossil/mmtk – An expermiment to amalgamate several major Tk extensions into a
single library

http://fossil.etoyoc.com/fossil/tkimg – A rewrite of the TkImg extension to eliminate the TEA extension
calling sub-TEA extensions.

http://core.tcl.tk/tcl – The Tcl Core. Practcl is being evaluated in feature branches for tip#453 and tip#430

http://core.tcl.tk/tcl
http://fossil.etoyoc.com/fossil/tkimg
http://fossil.etoyoc.com/fossil/mmtk
http://fossil.etoyoc.com/fossil/tcllib
http://fossil.etoyoc.com/fossil/odielib
http://fossil.etoyoc.com/fossil/odie
http://core.tcl.tk/tclconfig

Conclusion
Practcl is one of those illogically logical solutions to a complex problem. Prior attempts to “normalize”
Tcl extensions depended on trying to express them as data structures, or simply trying to express the
process of building them as a sequence of instructions. Practcl splits the difference. It stores data in
objects, and lets objects implement the procedures. With TclOO, we finally have a language perverse
expressive enough to state the similarity between extensions on a high level, yet really get our hands dirty
in the nasty details an workaround on the low level.

This is a fun toy, and I can't wait to see what people do with it.

Aknowledgements

Donal Fellows Without his extensive work on TclOO, Practcl in its present form would not
have been possible

Steve Landers,

Gerald Lester,
Christian Werner

This paper would have been longer, less engaging, and downright offensive to
Critcl users everywhere without their review and creative feedback on earlier
drafts of this paper

Kevin Kenny Practcl's facilities for generating TclOO implementations in C are
inspired/reverse engineered his work on TDBC.

My Wife and Kids For giving me things to do in life even more fun the Tcl programming. (As hard
as that is to imagine…)

Andreas Kupries For his tireless efforts on keeping the island of misfit toys together over the
years.

Ron Fox Who is probably going to find and help me fix a dozen tpyos typos in this paper
between now and publication

Contact Information
Questions, comments, or winning lotto numbers can be addressed to my personal email:
yoda@etoyoc.com

	Abstract
	Problem Statement
	What is Practcl?
	Practcl Internals
	Example 1: Implementing TIP#453
	Example 2: Building a Self-Contained Executable
	Distribution
	Practcl Users
	Conclusion
	Aknowledgements
	Contact Information

