
JSON as a Native Tcl Value

Cyan Ogilvie
Ruby Lane, Inc.

cyan@rubylane.com

October 24, 2016

Abstract

JSON, being a string representation of structured data, finds a natural home in
Tcl since this is exactly how Tcl sees all values (EIAS). Whereas most languages (even
Javascript!) require that JSON first be converted to a native representation, and later
serialized back to a string, Tcl provides the means (through the Tcl Obj mechanism)
to efficiently manipulate the JSON directly. rl json 1 does this following the pattern of
the dict command, and uses templates to provide the missing type information when
producing new JSON values. I discuss the lessons learned while optimizing rl json to
meet the performance required, and how having self-describing structured data in Tcl
is valuable beyond just data exchange.

1 Types Are a Problem

JSON has emerged as the de facto standard for data interchange between systems on the
Internet, replacing XML in this role largely due to its lighter syntax and simpler structure,
making it easy for most languages to directly translate it to and from native data structures.
Tcl was excluded from this because it lacks types (or rather, its types are not intrinsic to
values but are a transient property of values when they are accessed). Of course it is possible
to convert the JSON object to a dictionary, and many existing Tcl packages do this, but it
is a lossy transformation. Because JSON is typed, some systems use that channel to convey
information which is lost when converting to a dictionary. Many Tcl JSON packages treat
at least two of the following JSON documents as equivalent:

{

"foo": "is this a dict?",

"bar": null

1https://github.com/RubyLane/rl json

}

{

"foo": ["is", "this", "a", "dict?"],

"bar": ""

}

{

"foo": {

"is": "this",

"a": "dict?"

},

"bar": "null"

}

The null representation issue is well trodden ground, and consensus seems to be that there
is no reasonable way to represent this in Tcl without fundamentally changing the language.
The string / list / dictionary ambiguity is more subtle and is inescapably rooted in the fact
that a valid Tcl dictionary is all three. Indeed most English sentences are valid Tcl lists
and about half are valid dictionaries. For many applications in which Tcl is a consumer
of JSON data this issue isn’t a practical concern, since the script implicitly provides the
interpretation by how it accesses the values, just as it does for all other values in Tcl.
When the type information itself encodes meaning this strategy fails, but those situations
are fortunately rare in practice.

When it comes to producing JSON from Tcl values though the problem is unavoidable, and
there is no choice but to provide the type information explicitly in some way. This typically
leads to code that obscures the structure of the JSON document produced, and requires the
programmer reading the code to mentally execute it while maintaining a mental model of
the document being produced. While most programmers will succeed at this it is likely that
whatever mental process they were busy with will have been evicted from working memory,
hugely impacting on their productivity. This is especially true for very large and complex
JSON documents, such as Elasticsearch queries (our typical query is around 260 lines, 8.5
KB, and 13 levels of nesting).

2 Types Are Not Such a Problem If You Squint Just

Right

rl json resolves this difficulty by avoiding the conversion from JSON to another (lossy) repre-
sentation, providing instead a command that operates on the JSON values directly, analogous
to how the dict command works with (possibly nested) dictionary values. In this way the
type information is preserved and available when required, without obfuscating the script

in the majority of cases where it is not needed. To support this and maintain an accept-
able level of performance, rl json shimmers the JSON string to a custom Tcl ObjType that
stores the parsed document, representing each contained JSON value with a type enum and
a Tcl Obj holding the value. For a JSON object the Tcl Obj is a dictionary, for an array it
is a list, and so on. This allows efficient use of the contained values by Tcl, and elegantly
handles sharing the JSON value (or fragments of it) using the normal Tcl Obj reference
counting. This approach makes it straightforward to implement efficient in-place updates
to JSON values, which just invalidate the string rep and store a reference to the supplied
Tcl Obj (together with the JSON type).

For larger chunks of JSON structure that are filled in with values from the script, a template
approach is used, which can be combined with incremental construction as in this admittedly
contrived example:

set someval 0xFF

set res [json template {
{

"foo": "~S:someval",

"bar": "~N:someval",

"baz": ["~B:someval", "~S:otherval", "~L:~S:someval"]

}
}]

setting the "end+1" element of an array appends to it

json set res baz end+1 $res ;#YoDawg

json set res new {"entry"}

"end" and "end-1" are unambiguous because they index into an array

json unset res baz end baz end-1

puts [json pretty $res]

puts "baz: [json get $res baz 0] is a [json get $res baz 0 ?type]"

Which will produce:

{

"foo": "0xFF",

"bar": 255,

"baz": [

true ,

null ,

"~S:someval",

{

"foo": "0xFF",

"bar": 255,

"baz": [

true ,

"~S:someval"

]

}

],

"new": "entry"

}

baz: 1 is a boolean

json template replaces strings in the supplied JSON document that match the regular ex-
pression ^~[SNBJTL]:.+$ with values sourced from the named variables, and types indicated
by the replacement prefix (String, Number, Boolean, JSON, Template and Literal). Since
templates are themselves just JSON, they can be manipulated in the same way that any
other JSON values are.

3 Performance Considerations

Although obvious in hindsight, I was initially surprised that parsing the JSON strings to
build the internal representation was largely bottlenecked by Tcl Alloc – each JSON value
and object key needs to have a Tcl Obj created to store it, resulting in a lot of calls to
Tcl NewStringObj. To address this rl json maintains a per-interp cache of recently used
strings, using a hitrate and aging scheme to quickly learn patterns in the data, while re-
maining small and preferring frequently requested values. Besides being substantially faster
to lookup and reuse a Tcl Obj from this cache than to allocate a fresh instance, it also
consumes less memory since each instance is just a pointer to the shared Tcl Obj.

This sharing also promotes efficient reuse of the intreps of the Tcl Objs in the cache – for
instance if some string value in the JSON document contains an account status like “active”,
“closed”, “opening”, etc, and that value is later fed to Tcl GetIndexFromObj, then the
Tcl Obj in the cache will shimmer to record the index found. Similar JSON documents
processed in the near future with the same account status value will receive references to
that cached Tcl Obj, so their Tcl GetIndexFromObj lookups will be very fast.

When parsing a large number of similar JSON documents (such as the results returned by
an Elasticsearch query) the difference that deduplication makes over just calling
Tcl NewStringObj for each value is about an 8% to 15% reduction in execution time.

I used the Linux performance analysis tools to get some insight into where the time was spent
when parsing large amounts of JSON. These data were obtained using using perf record to

sample a script that ran 100 iterations parsing a 4MB JSON document.

3.1 Using Tcl NewStringObj

This version just called Tcl NewStringObj for each key and string value in the doc, taking
56.45 ms per iteration to parse the JSON document:

Overhead Command Shared Object Symbol

........

17.90% tclsh8 .6 libtcl8 .6.so [.] TclpAlloc

14.08% tclsh8 .6 libtcl8 .6.so [.] TclThreadAllocObj

13.44% tclsh8 .6 libtcl8 .6.so [.] FreeDictInternalRep

9.96% tclsh8 .6 librl_json0 .9.4. so [.] value_type

6.90% tclsh8 .6 libtcl8 .6.so [.] Ptr2Block

5.23% tclsh8 .6 libtcl8 .6.so [.] CreateHashEntry

3.56% tclsh8 .6 libpthread -2.23. so [.] pthread_getspecific

2.37% tclsh8 .6 libtcl8 .6.so [.] TclFreeObjEntry

2.33% tclsh8 .6 libtcl8 .6.so [.] Tcl_DeleteHashTable

2.16% tclsh8 .6 libtcl8 .6.so [.] TclFreeObj

2.08% tclsh8 .6 libtcl8 .6.so [.] TclpFree

1.74% tclsh8 .6 librl_json0 .9.4. so [.] free_internal_rep

1.64% tclsh8 .6 libtcl8 .6.so [.] TclHashObjKey

1.61% tclsh8 .6 librl_json0 .9.4. so [.] set_from_any

1.35% tclsh8 .6 libtcl8 .6.so [.] PutBlocks

1.21% tclsh8 .6 librl_json0 .9.4. so [.] skip_whitespace

TclpAlloc and TclThreadAllocObj dominate the overhead in this configuration.
value type is where the bulk of the actual JSON parsing is done.

3.2 Using String Deduplication

This version enables the deduplication of string values, using a Tcl HashTable keyed by the
string itself and mapping to a Tcl Obj containing the string. Each time the cache is hit
that entry’s hit count is incremented by one. When the number of entries exceeds 154 (a
number chosen by tuning for our data patterns) the cache is aged: each entries’ hitcount is
divided by two and those that reach 0 are evicted from the cache. In this way the size of
the cache remains bounded. Strings longer than 16 bytes are excluded from caching scheme.
This provides a very cheap cache that tends to keep the most common values in the cache
while remaining small and requiring very little housekeeping.

Using the same test setup as above, this version took 51.91 ms per iteration:

Overhead Command Shared Object Symbol

........

19.25% tclsh8 .6 libtcl8 .6.so [.] FreeDictInternalRep

18.48% tclsh8 .6 libtcl8 .6.so [.] TclpAlloc

9.96% tclsh8 .6 librl_json0 .9.4. so [.] value_type

8.62% tclsh8 .6 libtcl8 .6.so [.] TclThreadAllocObj

8.42% tclsh8 .6 libtcl8 .6.so [.] CreateHashEntry

5.30% tclsh8 .6 libtcl8 .6.so [.] Ptr2Block

2.26% tclsh8 .6 libtcl8 .6.so [.] Tcl_DeleteHashTable

2.23% tclsh8 .6 libpthread -2.23. so [.] pthread_getspecific

1.92% tclsh8 .6 librl_json0 .9.4. so [.] new_stringobj_dedup

1.90% tclsh8 .6 librl_json0 .9.4. so [.] set_from_any

1.78% tclsh8 .6 librl_json0 .9.4. so [.] free_internal_rep

1.66% tclsh8 .6 libtcl8 .6.so [.] TclHashObjKey

1.37% tclsh8 .6 libtcl8 .6.so [.] HashStringKey

1.32% tclsh8 .6 libtcl8 .6.so [.] TclFreeObj

1.26% tclsh8 .6 libtcl8 .6.so [.] TclpFree

1.24% tclsh8 .6 librl_json0 .9.4. so [.] skip_whitespace

1.13% tclsh8 .6 libc -2.23. so [.] __strcmp_sse2_unaligned

In this run TclpAlloc and TclThreadAllocObj’s share of the time has dropped in proportion
to the other hot functions.

4 When Both Sides Are Tclish

Dictionaries are an effective way to represent simple structured data such as a row from a
SQL result, or where the structure consists exclusively of nested dictionaries, but they start
to creak when the structure becomes much more complex. This is particularly true when
the structure mixes nested lists and dictionary values, as might be returned by a proc in the
data access layer that returns order information containing a list of items in the order and
correspondence about the order. The string representation of such a structure is daunting
to parse by eye, and the string / list / dictionary ambiguity means that it isn’t possible to
write a generic pretty-printer.

Since the structure of a JSON document is an intrinsic property of the value itself, a generic
pretty-printer can be written that allows programmers to bring their Gestalt pattern recog-
nition abilities to bear to quickly understand the document structure, and to pick out a
particular item of interest. Since programming languages are adapters between human and
machine intelligences, being able make effective use of the programmer’s wetware is an im-
portant design goal for these tools.

Although the impedance mismatch of a typed data structure in a typeless language would
seem to make it an odd choice for purely internal use cases there are compensations that
weigh in its favour. One of these is that the pattern of indexing into nested dictionaries
provided by dict get can be extended to work with arrays, since the type being indexed
into by an element in the key path is known. Consider:

set json {
{

"foo": "bar",

"baz": ["str", 123, 123.4, true, false, null, {"inner": "target"}]

}

}

These two approaches pick out the value "target" from the above

Since the types are known at each step of the path, the syntax for

indexing into mixed objects and arrays can be very terse:

json get $json baz end inner

If that interpretation has to be supplied implicitly by the commands

used to access each step, the syntax becomes cumbersome:

dict get [lindex [dict get [json::json2dict $json] baz] end] inner

Being able to directly modify arrays with json set also provides a nice way to implement
queues, or reorders:

set items {
{

"source": ["a", "b", "c", "d", "e", "f"],

"shuffled": []

}
}

while {[json get $items source ?length]} {

set picked [expr {int(rand() * [json get $items source ?length])}]

setting element "-1" of an array prepends an element to it.

"end+1" would work here too

json set items shuffled -1 [json extract $items source $picked]

unsetting an element in an array removes it

(rather than setting it to null)

json unset items source $picked

}

5 Future Work

json template currently produces a string result, but experience with the package has
shown that the result is very often further manipulated by other json commands. It would
therefore be more efficient to return a native JSON Tcl Obj and defer the serialization until
it is actually needed.

It would be interesting to apply the speculative deduplication used here for short strings to
the core in general (probably by incorporating it into TclNewStringObj), since it is both
faster and reduces memory footprint.

json foreach and json lmap should be NRE enabled.

Appendix A: Quick Reference

• json get json val ?key ... ?modifier??

Extract the value of a portion of the json val, returns the closest native Tcl type (other
than JSON) for the extracted portion.

• json get typed json val ?key ... ?modifier??

Extract the value of a portion of the json val, returns a two element list: the first being
the value that would be returned by json get and the second being the JSON type
of the extracted portion.

• json extract json val ?key ... ?modifier??

Extract the value of a portion of the json val, returns the JSON fragment.

• json exists json val ?key ... ?modifier??

Tests whether the supplied key path and modifier resolve to something that exists in
json val.

• json set json variable name ?key ...? value

Updates the JSON value stored in the variable json variable name, replacing the value
referenced by key ... with the JSON value value.

• json unset json variable name ?key ...?

Updates the JSON value stored in the variable json variable name, removing the value
referenced by key ...

• json normalize json val

Return a normalized version of the input json val – all optional whitespace trimmed.

• json template json val ?dictionary?

Return a JSON value by interpolating the values from dictionary into the template,
or from variables in the current scope if dictionary is not supplied, in the manner
described in Appendix A.2: Templates.

• json new type value

Return a JSON fragment of type type and value value.

• json foreach varlist1 json val1 ?varlist2 json val2 ...? script

Evaluate script in a loop in a similar way to the foreach command. In each iteration,
the values stored in the iterator variables in varlist are the JSON fragments from

json val. Supports iterating over JSON arrays and JSON objects. In the JSON object
case, varlist must be a two element list, with the first specifying the variable to hold
the key and the second the value. In the JSON array case, the rules are the same as
the foreach command.

• json lmap varlist1 json val1 ?varlist2 json val2 ...? script

As for json foreach, except that it is collecting - the result from each evaluation of
script is added to a list and returned as the result of the json lmap command. If the
script results in a TCL CONTINUE code, that iteration is skipped and no element is
added to the result list. If it results in TCL BREAK the iterations are stopped and
the results accumulated so far are returned.

Appendix A.1: Paths

The commands json get, json get typed, json extract and json exists accept a path
specification that names some subset of the supplied json val. The rules are similar to the
equivalent concept in the dict command, except that the paths used by json allow indexing
into JSON arrays by the integer key (or a string matching the regex ^end(-[0-9]+)?$), and
that the last element can be a modifier:

• ?type – Returns the type of the named fragment.

• ?length – When the path refers to an array, this returns the length of the array. When
the path refers to a string, this returns the number of characters in the string. All other
types throw an error.

• ?size – Valid only for objects, returns the number of keys defined in the object.

• ?keys – Valid only for objects, returns a list of the keys in the object.

A literal value that would match one of the above modifiers can be used as the last element
in the path by doubling the ?:

json get {
{

"foo": {

"?size": "quite big"

}

}
} foo ??size

Returns “quite big”.

Appendix A.2: Templates

The json template command generates JSON documents by interpolating values into a
template from a supplied dictionary or variables in the current call frame. The templates are
valid JSON documents containing string values which match the regex ^~[SNBJTL]:.+$. The
second character determines what the resulting type of the substituted value will be:

• S: A string.

• N: A number.

• B: A boolean.

• J: A JSON fragment.

• T: A JSON template (substitutions are performed on the inserted fragment).

• L: A literal – the resulting string is simply everything from the forth character onward
(this allows literal strings to be included in the template that would otherwise be
interpreted as the substitutions above).

None of the first three characters for a template may be escaped.

The value inserted is determined by the characters following the substitution type prefix.
When interpolating values from a dictionary they name keys in the dictionary which hold
the values to interpolate. When interpolating from variables in the current scope, they name
scalar or array variables which hold the values to interpolate. In either case if the named
key or variable doesn’t exist, a JSON null is interpolated in its place.

	Types Are a Problem
	Types Are Not Such a Problem If You Squint Just Right
	Performance Considerations
	Using Tcl_NewStringObj
	Using String Deduplication

	When Both Sides Are Tclish
	Future Work

