
Hyperfeed: FlightAware’s parallel flight tracking engine

Zach Conn

Lead Software Developer, FlightAware

Abstract

This paper discusses hyperfeed, FlightAware’s core flight data processing engine written
in Tcl. Developed incrementally over the course of a decade, hyperfeed is responsible for
ingesting all of FlightAware’s 40+ data feeds, aggregating the data together, resolving incon-
sistencies, filling in gaps, detecting and filtering out unreliable or bad data, and producing a
single data feed that represents an all-encompassing coherent view of worldwide flight traffic
as understood by FlightAware. These results are visible to millions of users through the
website, mobile apps, and various APIs.

Hyperfeed is a high-performance, highly parallel and concurrent system that can easily
saturate 32+ cores of a modern high-end machine, and it’s all written in Tcl. It can run
for weeks or months at a time and is only restarted to pick up software updates. It con-
sists of a dispatcher process which routes incoming messages to child interpreters, which do
work in parallel while sharing data and communicating state when necessary through a cen-
tralized PostgreSQL data store. Read-committed and linearizable/serializable transactional
semantics from PostgreSQL are relied upon to guarantee correctness under contention.

1. Introduction

Founded in 2005, FlightAware was the world’s first major flight tracking company, and
it remains the largest and most successful to this day. The company now processes 40+ data
feeds, ingesting 150 GB of data per day consisting of 50-100 million messages. FlightAware is
particularly interesting to the Tcl community because virtually all of FlightAware’s software
is written in Tcl, from the website to the most demanding distributed backend applications.

This paper explores the history of one particular piece of backend infrastructure at
FlightAware. We call it hyperfeed, but it’s gone by a few different names in the past,
including feed interpreter. Beyond being interesting in and of itself, hyperfeed has had
a unique history of interaction with the Tcl programming language, and it’s one of the
most mission-critical pieces of production infrastructure anywhere using speedtables, a
high-speed in-memory database exclusively for Tcl.

The present parallel implementation still makes several interesting uses of Tcl:

Email address: zachery.conn@flightaware.com (Zach Conn)

Preprint submitted to 23rd Annual Tcl/Tk Conference October 25, 2016

• Data that is not potentially in contention from multiple processes, doesn’t need trans-
actional semantics, and which wouldn’t benefit from post-hoc analysis is stored in
speedtables.

• Tcl’s event loop allows us to easily asynchronously defer processing of messages until
we’ve learned more information over time. We’ve built a virtual sequencer on top of
this to facilitate the use of virtual clocks in scheduling and sequencing commands; this
allows us to replay historical scenarios easily.

• During a major architectural rewrite in 2015, when we redesigned hyperfeed from
a single-threaded program to a parallelized system, we needed to introduce the use
of PostgreSQL as a replacement for some of the speedtables used by the older archi-
tecture. Tcl’s dynamic and introspective nature allowed us to do this with minimal
rewriting of code by dynamically redefining procs and introducing a query translation
layer.

• We have often performed software updates with zero downtime and no restarts thanks
to hot code reloading, again made possible by Tcl’s highly dynamic nature.

2. The problem space

hyperfeed receives data from over 40 different feeds, including data from air traffic
control systems in over 55 countries, from FlightAware’s network of ADS-B ground stations
in over 140 countries, from Aireon space-based global ADS-B, and using global datalink
(satellite/VHF) via every major provider, including ARINC, SITA, Satcom Direct, Garmin,
Honeywell GDC, and UVdatalink.

From a very high level perspective, we can place messages from all these feeds into a few
categories:

• Flightplan messages at a bare minimum tell us the origin, destination, scheduled
departure time, and scheduled arrival time of a particular flight. These messages come
in a huge variety of formats from different sources, and many of them include far more
information than just this, but they all fundamentally just tell us that a particular
flight is planning on leaving one airport at a certain time and landing at another
airport at another time.

Note that for a given flight we might receive multiple flightplan messages which revise
information about the flight as updates become known to our various sources.

• Position messages tell us that a plane was at a particular location at a specified
timestamp.

• Event messages tell us that a special event has occurred for a flight.

– Departure messages tell us that a plane has taken off from its origin airport.

– Arrival messages tell us that a plane has landed at its destination airport.

– Offblock messages tell us that a plane has pushed back from its gate.

– Onblock messages tell us that a plane has arrived at its gate at its destination
airport after landing.

From this, it’s easy to conceptualize how we try to track a flight. Ideally we receive a
flightplan message in advance of the flight (the sooner the better, so that we can display the
flight on the website). Between the initial flightplan message and departure, we’ll receive
revised flightplan messages that provide updated departure and arrival times (amongst other
data). On departure, we’ll receive a departure message. Then we’ll receive a sequence of
positions. And finally we’ll receive an arrival message.

Unfortunately, it doesn’t always happen like this, and that’s why hyperfeed exists. Here
are just a few ways in which the above picture can break down:

• Nobody sends us the flightplan until the flight is already in the air.

• Nobody ever sends us the flightplan at all, but the flight does fly.

• We receive a flightplan, but the information it contains is inaccurate. For instance:

– The departure time might be off by an hour or more.

– The flight might be delayed.

– The callsign for the flight might change.

– The flight may never fly at all despite us having received a flightplan message for
it.

– The flightplan data might just be flat-out wrong (e.g., wrong origin or destina-
tion). It might have even been filed on the wrong day entirely.

• A flight departs, but we don’t receive a departure message.

• We receive a departure message, but the plane didn’t actually depart.

• A flight lands, but we don’t receive an arrival message.

• We receive an arrival message, but the plane is still in the air.

• The flight diverts to a different destination airport and nobody tell us this.

• We’re told that a flight has diverted, but it didn’t.

• We receive positions with the wrong callsign, making it appear that these positions
belong to one flight when they actually belong to another.

• We receive positions that indicate the plane is in the air, but it’s actually on the
ground.

• We receive positions that indicate the plane is on the ground, but it’s actually in the
air.

In short, Murphy’s law applies: if something can go wrong, it will go wrong. Hyperfeed
exists to make sure the flight data that we stitch together actually presents a coherent and
sensible picture of air traffic activity around the world. It synthetically detects arrivals,
departures, and diversions even if nobody tells us about these events. It can create adhoc
flightplans for flights that we receive positions for but never received a flightplan for. It can
remember flightplans for days so that when it sees a departure three days later it knows
which flight it’s for.

In general it’s skeptical of every message it sees. It might see a cancellation message
but determine that the cancellation is most likely false and ignore it. It might see a depar-
ture message but determine that the departure is most likely premature and hold onto the
information in-memory for several minutes waiting for a second source to corroborate the
departure.

In addition to the above, there’s the problem of conflicting data privileges. Not all of
our customers have access to all of our data feeds. A particular customer should only be
able to see a version of a flight which could be deduced and reconstructed from the data
sources that they are allowed to see. hyperfeed thus maintains multiple versions of every
flight it tracks, specifically one version for every unordered combination of distinct privilege
classes seen among the sources that contributed data to the flight. It’s clear that in the
worst case this leads to exponential growth in the number of flights maintained in-memory
as the number of privilege classes grows.

In summary, hyperfeed is a hand-crafted AI that uses fuzzy logic instead of machine
learning in order to make intelligent decisions about input data. It’s the PageRank of
FlightAware.

3. A bit of history

Because hyperfeed has to keep flightplan information in-memory for days at a time,
it relies heavily on having a robust and queryable data store. The current implementation
uses PostgreSQL for this purpose, which provides exceptional support for concurrency as
well as durability and the extremely flexible query semantics of SQL. However, for most
of its history hyperfeed was single-threaded and known as the feed interpreter (FI)

instead. FI used speedtables exclusively for its in-memory data store.
Speedtabless provides a high-performance memory-resident database implemented as a

C extension to Tcl. Unlike, say, redis, speedtables has full support for secondary indexes
and more complex queries beyond just simple key-value lookups. This made it extremely
well-suited to the problem of storing and querying hundreds of thousands of flightplans and
millions of positions in memory from Tcl.

Here’s an example of how a flightplan search might have been performed using speedta-
bles:

set compList [list [list = ident $data(ident)] [list = orig $orig] \

[list = dest $dest] [list null child]]

flightplans search -compare $compList -key id -array flightplan -code {...}

This is very similar to a SELECT query in SQL; it’s searching for all known flightplans
between a given origin and destination and which have a specified callsign. (The ”null
child” condition is very FA-specific.)

FI was one of the biggest production uses of speedtables and fully utilized its performance
and support for secondary indexes and flexible queries. Unfortunately, due to issues that will
be discussed in more detail below, speedtables didn’t have adequate support for concurrency,
so when we parallelized FI we ended up replacing it with PostgreSQL. However, speedtables
are still used in hyperfeed to store static data sets (e.g., airport elevation data), since
speedtable queries are still faster than PostgreSQL queries.

As an interesting aside, the speedtables API has a query translation layer. This layer
can translate speedtable queries into SQL queries, which has several uses:

• If a speedtable is being used as a high-speed cache for a PostgreSQL table, the queries
can fall back to SQL if needed for some reason.

• In the case of the transition from FI to hyperfeed, we used this translation layer to
avoid the need to rewrite all of the speedtable queries in FI. This was a huge win in
terms of minimizing the amount of code that needed to be rewritten.

This translation layer is open source and available in the public distribution of speedta-
bles; it’s a core part of STAPI, the speedtables API.

As an example, consider the following speedtable query written in pure Tcl:

flightplans search -compare [list [list = ident UAL5]] \

-array matchedPlan \

-code { ... }

The speedtables API (STAPI) will optionally convert this into a simple SELECT state-
ment:

SELECT * FROM production.flightplans WHERE ident = ’UAL5’;

There are advantages to writing the query in pure Tcl rather than SQL. For instance, Tcl
data structures such as lists are easier and cleaner to dynamically generate than strings, and
the underlying translation layer can also handle argument quoting for preventing injection
attacks.

4. The structure of hyperfeed

hyperfeed consists of a variety of components. Each of these will be examined individ-
ually:

• The dispatcher is responsible for routing incoming messages to appropriate child
interpreters.

• There are around 100 child interpreters which receive messages to process from the
dispatcher. These child interpreters connect to the hyperfeed database and attempt
to make sense of each message.

• The projector is a separate process that concurrently looks for flights that are airborne
but haven’t received real positions recently. For these flights it estimates or ”projects”
where they should be at the current time based on their filed route.

• The housekeeper is a separate process that concurrently looks for flight data that
we no longer need to maintain and deletes it from the relevant database tables.

• The controlstream writer is a separate process that each child interpreter connects
to and sends output messages to. controlstream is our name for the output data feed
that hyperfeed produces. The writer process is responsible for synchronizing writes
to the feed from all the child interpreters.

• The virtual sequencer is an internal event loop, inspired by the Tcl event loop, which
allows us to schedule events to occur at points in virtual time. This makes historical
replays very easy.

• The database acts as a centralized transactional data store of flightplans, positions,
and other data that must potentially be operated on concurrently by child interpreters.

4.1. The dispatcher

The design we eventually settled on for the dispatcher is very simple, but in the process
of getting there we considered several much more complex algorithms. Ultimately it was the
use of PostgreSQL that allowed us to simplify the dispatcher so drastically. What follows is
an examination of how the problem of dispatching messages can potentially be quite difficult.

A special case of the problem can be isolated and understood. Flights often have two
possible identifiers: the callsign and the tail number. Sources do not consistently identify a
flight by one or both of these; some will use the callsign, some will use the tail number, and
some will use both. If we wish to dispatch messages to children in such a way that messages
for the same flight always go to the same child, we already run into difficulties.

Define the signature of an input message to be the tuple (c, r) where c is the callsign and
r is the registration, where either or both may be the empty string. Consider the following
sequence of events:

• A message with signature (c1, r1) is received. c1 and r1 are both assigned to child h1.

• A message with signature (c2, “”) is received. c2 is assigned to a different child, say h2.

• A message with signature (c2, r1) is received. A conflict is encountered between children
h1 and h2. It’s unclear which child this message should be sent to.

Suppose a mechanism exists which allows us to completely copy a flight and all its
associated data (positions, etc.) from one child to another. Even if we ignore the fact that
such an operation is likely to be prohibitively expensive if it must be frequently performed
for many flights per second, we will still run into issues:

• We move all the flight data for any flights with tail number r1 from child h1 to child
h2.

• It’s now clear that we should send the message with signature (c2, r1) to child h2.

• A message with signature (c1, r1) is received. We move back any flight with tail number
r1 from h2 to h1.

• In the worst case, an oscillatory pattern results.

The problem is that transferring flights associated just with registration r1 from one child
to another is not enough. We have to account for a network effect, whereby any flight with
a callsign that has been paired with r1 must also be transferred, and then any flight that
has a tail number that has been paired with a callsign that has been paired with r1 must
be moved, and so on. It’s clear that this amounts to a standard breadth-first traversal of a
certain abstract graph.

The graph G can be constructed as follows:

• For each distinct callsign c, create a new node with the label (c, 0).

• For each distinct tail number/registration r, create a new node with the label (r, 1).

• Introduce edges into G as follows: if there exists a message with signature (c, r), add
an edge between node (c, 0) and node (r, 1).

If we decide that every flight associated with a particular registration r1 needs to be
moved to child h1, then we also need to relocate all flights discovered via the following
recursive procedure:

• Transfer all flights with a callsign c that occurs in a node of the form (c, 0) with an
edge connecting it to node (r1, 1).

• For each such callsign c, transfer all flights with a registration r′ that occurs in a node
of the form (r′, 1) with an edge connecting it to the node (c, 0).

• For each such registration r′, transfer all flights with a callsign c′ that occurs in a node
of the form (c′, 0) with an edge connecting it to the node (r′, 1).

• Rinse and repeat.

This is evidently nothing other than a modified breadth-first search. In fact, it can be
visualized quite nicely as assigning child IDs to connected components of G.

We were immediately skeptical of introducing this level of complexity into the dispatcher.
In particular, this would mean that reconstructing historical replays would be very delicate
indeed, but this is critical to debugging flight tracking errors. All of this could be avoided if
only different children could concurrently operate on the same flight data, since this would
mean we wouldn’t need to be so rigorous about cleanly separating flights across children.
Among other considerations, this is ultimately what led us to use PostgreSQL as the data
store.

With the transactional semantics of PostgreSQL, the dispatcher becomes much simpler:

• In general, messages are sent to children in simple round-robin order.

• If we receive a message with signature (c, r) and we’ve recently sent a message with
the same signature to a particular child, then we violate the round-robin order and
send the current message to the same child. We call this “forgetful affinity”: each
signature has an affinity for a certain child, but the affinity expires after a short period
of time.

• This round-robin forgetful affinity dispatcher can be implemented easily and efficiently
using a simple time-to-live hash map. For extra efficiency, we implemented the TTL
map using a speedtable.

4.1.1. Child recycling

The dispatcher is also responsible for periodically recycling the child interpreter processes
(which, as discussed below, are created as copies of the dispatcher process via the fork

system call, exposed through TclX).
Periodically recycling child interperters has a few advantages, including refreshing the

prepared statements which each interpreter uses. The problem of recycling forked copies of
the dispatcher is an interesting case study of how to delicately use the Tcl event loop.

A recycle next child proc is scheduled to execute periodically in time. The following
is a simplified version of how this is done:

proc periodically_recycle_children {} {

set dt [expr {1000 * $::hyperfeed::childRestartInterval}]

set ::hyperfeed::nextRestartEventPID \

[after $dt [list ::hyperfeed::periodically_recycle_children]]

::hyperfeed::recycle_next_child

}

recycle next bucket determines the ID of the child interpreter to recycle next and then
invokes recycle bucket, which handles the dirty work of cleanly shutting down the child

interpreter and creating a new one via TclX’s fork proc. The delicacy arises from the fact
that the newly forked child process will inherit the parent’s event loop, including the self-
rescheduling proc periodically recycle children. Tcl’s after cancel command makes
this situation easy to remedy.

4.2. The child interpreters

Each child interpreter is created initially as a copy of the dispatcher process, using the
fork system call provided by TclX.

We chose to create children via fork because of the copy-on-write semantics of Unix
process creation. Each child interpreter loads a fair amount of static data on startup into
speedtables. This quickly becomes a bottleneck during startup if performed by 100+ children
simultaneously. Staggering the children in time makes startup even slower. But simply doing
it once in a parent process and then creating children via fork makes startup very fast and
clean.

In particular, the difference in startup time between hyperfeed with 100 children and the
previous single-threaded speedtables-backed FI is staggering. It takes a few seconds at most
to launch the dispatcher and all 100 children and for each process to establish a connection
to the hyperfeed database. FI, on the other hand, would have to load all its speedtables
in-memory from a checkpoint written to disk, which in the worst case could take up to a
few minutes. Of course, we could have used client-server speedtables, but this still didn’t
offer the concurrency properties we needed nor the rock-solid durability of PostgreSQL.

4.2.1. The structure of a child interpreter

Each child interpreter passes incoming messages through a simple processing pipeline:

• Parsing and normalization. The interpreter tries to normalize different messages
so that they can assume only one of a few forms. For instance, it tries to convert
any position messages into its internal format for positions, and likewise for flightplan
updates, departures, arrivals, diversions, and more.

• Flightplan matching. Once normalized, an input message must be matched against
the correct flightplan held in the database by hyperfeed. There may be no valid
match, in which case a new flightplan will be created.

• Flightplan forking. Inspired by the system call of the same name, hyperfeed creates
a fork of a flightplan if the current message has a privilege class that has not yet
contributed data to the flightplan. A flightplan fork can be thought of as a version of
the flight which contains only data from a particular subset of the set of all privilege
classes that have contributed data to the flight.

• Status updates. hyperfeed must deduce how the state of the flight changes based
on information from the message and the flightplan it matched against.

• Output message generation. Finally, of course hyperfeed must prepare messages
to be sent downstream to describe the new state of the flight and any updates that
might have occurred, including the creation of new forks of the flight.

Flightplan matching and forking are particularly interesting and deserve more explana-
tion.

Flightplan matching. Flightplan matching consists of two steps:

• Given an input message, query hyperfeed’s internal state (stored in the database) to
determine a set of potential candidate flightplan matches.

• For each candidate flightplan, judge the likelihood that the input message corresponds
to the candidate flightplan.

The first step was previously done using speedtables queries, and now it’s done using
SQL queries.

The second step uses hand-crafted fuzzy logic to compute the probability that an input
message matches against a candidate flightplan. This logic has been tweaked repeatedly over
the years and contains within it a lot of the domain-specific knowledge that FlightAware
has accumulated over its lifetime.

If no match probability is sufficiently high, the match will be declared a failure, and a
new flightplan will be created and stored in the database.

Flightplan fork creation. After a message has successfully matched against a flightplan, the
child interpreter compares the privilege class of the new message against all forks of the
flightplan. To each existing fork there corresponds a subset of the set of all possible privilege
classes. If the privilege class of the new message does not appear among any of these subsets,
then the child interpreter knows that new forks must be created.

The number of forks that must be created is such that at the end of the process hyperfeed
should have one fork of this flight for every possible unordered combination of privilege
classes that have contributed data to the flight. Note that there is not a one-to-one cor-
respondence between privilege classes and data sources; many data sources have the same
privilege class.

4.2.2. Transactional message processing

One of the more interesting features offered to us by PostgreSQL over alternatives
like speedtables is the ability wrap multiple queries inside a transaction. In the case of
hyperfeed, each child interpreter has an internal transacion retry loop.

This loop functions as follows. When the interperter first begins processing a message,
it opens a new transaction. When it’s done with the message, it attempts to commit the
transaction. If the commit fails, it can retry the entire message, creating a new transaction
and attempting to commit it. This continues until either the commit succeeds or the retry
limit is exhausted.

There are various delicate details involved in making this work correctly. For instance,
output messages must be queued instead of emitted directly, and the queue must be managed
correctly on message failure or retry.

hyperfeed also supports nested transactions, or subtransactions, by using PostgreSQL
savepoints. A nested transaction is such that it can be rolled back without rolling back the
enclosing transaction. As an example, the process of flightplan fork creation is wrapped in
a nested transaction, so that failure to create a fork does not necessarily cause the entire
message transaction to fail.

This transaction retry loop means that hyperfeed can naturally make use of a serial-
izable or linearizable isolation level for its transactions. When two concurrent transactions
are run with a serializable isolation level, PostgreSQL guarantees that only results will be
obtained which could be obtained by choosing some ordering of the concurrent transactions
and processing them serially. If results are obtained that could not be obtained serially, Post-
greSQL will force one of the transactions to fail with a serialization error, and hyperfeed

will be able to retry it.

4.3. The projector

In the modern incarnation of hyperfeed, the projector is a separate process which pe-
riodically runs and connects to the hyperfeed database.

The projector has a fairly simple but very important role. It queries the shared database
to find flights that are known to be en route currently, but which haven’t received any real
positions recently. For each such flight, it attempts to estimate or “project” the plane’s
current location based on information about the flight (e.g., origin, departure, scheduled
departure and arrival times, airspeed, and/or the filed flight route).

The projector is itself parallelized. After determining the set of flights that need to be
projected, it creates various worker threads to project batches of these flights in parallel.
This means that the projector can complete a run successfully in only one or two seconds.

4.4. The housekeeper

Like the projector, the housekeeper is a separate process that runs periodically and
connects to the hyperfeed database. Its purpose is to identify flights that no longer need
to be stored by hyperfeed and to delete them and all their associated data.

Here are some examples of criteria the housekeeper uses to decide if a flight qualifies for
deletion:

• If a scheduled flightplan has received no activity for at least two hours after its filed
departure time, the housekeeper will issue a synthetic cancellation.

• If a flight was seen to depart and has been projected (estimated) all the way to its
destination, the housekeeper may issue a synthetic “flight result unknown” arrival for
the flight.

• If a flight has a recent real position near its destination, the housekeeper may issue a
synthetic arrival for the flight.

• If a flight has been arrived and in a state of completion for at least several hours,
the housekeeper may simply delete it from the database. The flight data will live on
downstream in other FlightAware services; hyperfeed in particular will not need to
make use of the flightplan information anymore.

There are many other criteria that the housekeeper looks for, but these examples capture
the spirit of how it works and what it does.

4.5. The virtual sequencer

One of the most unique features of Tcl is its built-in event loop. hyperfeed has its own
event loop called the virtual sequencer which is heavily inspired by Tcl’s own event loop.

The primary motivation of the virtual sequencer was the need to schedule events in
virtual time. For instance, for debugging purposes we may want to run hyperfeed over a
subset of historical data for just a particular callsign or tail number. Not only does this
mean that this hyperfeed instance will be reading data from potentially months or years
ago; it also means it will be progressing much faster than normal due to ingesting a much
smaller and more restricted input data set. For instance, we might want to schedule an
event to happen five minutes in the virtual future, but this might correspond to only a few
milliseconds in the real future if hyperfeed is progressing very quickly.

The virtual clock is determined by the timestamps of the messages that a hyperfeed

instance is processing. By being able to schedule events in virtual time instead of real time,
high-speed historical replays follow as a trivial byproduct.

In fact, each child interpreter has its own virtual sequencer and virtual clock. However,
they all share the same event schedule, which is stored in the hyperfeed database. This
allows us to maintain the invariant that each child interpreter can pretend that it’s the
only one, even if it’s just one among one hundred. For instance, child interpreter h1 might
schedule event A to happen at a particular point in the virtual future. Event A will be
assigned specifically to child h1, but another child, say child h2, could cancel A or re-schedule
it without ever knowing that A was meant to be executed by h1, not h2.

4.6. The database

We chose PostgreSQL for the database. At this point we’ve already touched on many
of the reasons behind choosing a SQL database instead of an in-memory database like
speedtables or redis:

• hyperfeed makes extensive use of secondary indexes and complex queries. This makes
simpler in-memory databases like redis or memcached much less ideal candidates.
Speedtables has fantastic support in this category.

• We need world-class support for concurrency. While a single-threaded redis server
can in some cases be so fast as to offer a convincing illusion of parallelism, redis
transactions are just atomic batches of commands. The same is true for speedtables.
More precisely, there is no notion of an “open” transaction in these systems. With

PostgreSQL, a child interpreter can open a transaction, execute queries, make decisions
based on the results of those queries, and still decide at the end whether to commit or
rollback the transaction. Accomplishing something similar with redis or speedtables
would have required a considerable rewriting of the entire codebase.

• PostgreSQL offers fantastic durability, and the performance here is quite tunable.

As a note on performance tuning, we found we got the best results by keeping fsync on
in PostgreSQL, but turning synchronous commit off and setting the WAL writer delay to
10 seconds. In fact, this is the key tweak that made it viable for us to use PostgreSQL. We
also make heavy use of prepared statements.

5. The role of Tcl in dynamic query translation

As mentioned, in 2015 we migrated from our old single-threaded system (known as the
feed interpreter) to the parallelized version (known as hyperfeed), which from a high
level simply runs 100+ instances of the old FI side by side. In making this transition, we
wanted to minimize the amount of code that needed to be rewritten. Tcl turned out to aid
in this endeavor quite a bit.

As an example, we used the query translation layer in the speedtables API to avoid
having to rewrite all the speedtables queries. We achieved this by dynamically creating
procs named after the old speedtables. For instance, we previously had a speedtable named
flighplans. Now flightplans is a table in a SQL database and has no existence as a Tcl
object. So we created it dynamically as a proc:

set ::pgInstances($instanceName) \

[::stapi::connect sql:///${tableName}?_key=${keyName}]

This rewrites a table name, like ’flightplans’, into a proc

which references the Postgres object ID, allowing existing

speedtable queries to work automatically.

proc $instanceName {args} [format {

return [uplevel $::pgInstances(%s) $args]

} $instanceName]

Thanks to the dynamic nature of Tcl, this is all it took to avoid rewriting all the queries
in hyperfeed, which was incredibly powerful in bootstrapping the project and obtaining a
working prototype.

6. Asyncrhonous console interfaces and hot code reloading

FlightAware has an open source fa console package, which when embedded in a Tcl
program allows one to create a console port which one can connect to and send commands

to the running program for execution. Both the older feed interpreter and the modern
hyperfeed expose console interfaces via this mechanism.

The live console interfaces enabled in this way can be incredibly powerful, even danger-
ously so. For years we lived on the edge a bit. We routinely deployed small code updates to
FI by connecting to the program’s console port and issuing Tcl source commands. We’ve
done this countless times and it never failed or malfunctioned once. This allowed us to roll
out minor tweaks and updates with zero downtime and no outages. Keep in mind that a
hyperfeed outage is an outage for basically the entire company.

We can still do this in the modern hyperfeed, except we can’t just use the built-in
source command due to the existence of multiple children. Instead we use a custom inject

command which propagates the command to all the children.
In practice, we don’t do this anymore because the architectural changes in going from

FI to hyperfeed made startup and shutdown so fast that it’s practical now to just restart
hyperfeed completely even for very minor and small code changes.

